
Attention Is All You Need 

1 Introduction  
1. Introduction: 

• Establishes the use of recurrent neural networks (RNNs), long short-term memory 

(LSTM), and gated recurrent neural networks as state-of-the-art approaches in 

sequence modeling and transduction problems. 

• Mentions various efforts to push the boundaries of recurrent language models and 

encoder-decoder architectures. 

2. Contributions and Key People: 

• Describes the equal contributions and involvement of different individuals in the 

development and evaluation of the proposed idea. 

• Notes the affiliation and contributions of individuals from Google Brain and Google 

Research. 

• Provides information about the conference where this work was presented. 

3. Limitations of Recurrent Models: 

• Explains the sequential nature of recurrent models and their inherent difficulty in 

parallelization, particularly with longer sequence lengths. 

• Mentions recent efforts to improve computational efficiency through factorization tricks 

and conditional computation, but states that the constraint of sequential computation 

remains. 

4. Attention Mechanisms in Sequence Modeling: 

• Highlights the use of attention mechanisms in sequence modeling and transduction 

models to capture dependencies without regard to the distance between elements. 

• Points out the usual combination of attention mechanisms with recurrent networks, 

except for a few cases. 

5. Proposal of the Transformer Model: 

• Introduces the Transformer as a model architecture that eliminates recurrence and 

relies solely on an attention mechanism to establish global dependencies between input 

and output. 

• Emphasizes the Transformer's significant parallelization capabilities and its ability to 

achieve state-of-the-art translation quality with relatively short training time. 



2 Background  
1. Background of reducing sequential computation: 

• The goal of reducing sequential computation forms the foundation of various models 

like Extended Neural GPU, ByteNet, and ConvS2S. 

• These models use convolutional neural networks to compute hidden representations in 

parallel for all input and output positions. 

• The number of operations required to relate signals from distant positions is reduced in 

the Transformer as compared to ConvS2S and ByteNet. 

• However, this reduction in operations leads to a decrease in effective resolution, which 

is countered by Multi-Head Attention. 

2. Self-attention mechanism: 

• Self-attention, also known as intra-attention, is an attention mechanism that relates 

different positions within a single sequence to compute a representation of the 

sequence. 

• Self-attention has been successfully used in various tasks such as reading 

comprehension, abstractive summarization, textual entailment, and learning task-

independent sentence representations. 

3. End-to-end memory networks and comparison to previous models: 

• End-to-end memory networks use a recurrent attention mechanism and have 

performed well on simple-language question answering and language modeling tasks. 

• The Transformer is the first transduction model that relies entirely on self-attention to 

compute representations of its input and output, without using sequence-aligned RNNs 

or convolution. 

• The advantages of self-attention over models like Extended Neural GPU, ByteNet, and 

ConvS2S will be discussed in the following sections. 

3 Model Architecture  
1. Model Architecture: 

• Most competitive neural sequence transduction models have an encoder-decoder 

structure. 

• The encoder maps an input sequence of symbol representations to a sequence of 

continuous representations. 

• The decoder generates an output sequence of symbols based on the continuous 

representations. 

• The model is auto-regressive, meaning it uses previously generated symbols as 

additional input when generating the next symbol. 

2. The Transformer Architecture: 



• The Transformer follows the general encoder-decoder structure. 

• It utilizes stacked self-attention and point-wise, fully connected layers for both the 

encoder and decoder. 

• Figure 1 shows the visual representation of the encoder and decoder components. 

3.1 Encoder and Decoder Stacks  
1. Encoder Stack: 

• The encoder stack consists of N = 6 identical layers. 

• Each layer has two sub-layers: a multi-head self-attention mechanism and a position-

wise fully connected feed-forward network. 

• Residual connections and layer normalization are employed around each sub-layer. 

• The output dimensions of all sub-layers and embedding layers are dmodel = 512. 

2. Decoder Stack: 

• The decoder stack also consists of N = 6 identical layers. 

• In addition to the two sub-layers in each encoder layer, the decoder has a third sub-

layer. 

• The third sub-layer performs multi-head attention over the output of the encoder stack. 

• Similar to the encoder, residual connections and layer normalization are used around 

each sub-layer. 

• The self-attention sub-layer in the decoder stack is modified to prevent positions from 

attending to subsequent positions. 

• Masking and offsetting of output embeddings ensure that predictions for a position 

depend only on known outputs at positions less than that position. 

3.2 Attention  
1. Introduction of Attention: 

• The text introduces the concept of attention. 

2. Definition of Attention Function: 

• An attention function is described as a mapping between a query and a set of key-value 

pairs. 

• The query, keys, values, and output are all vectors. 

3. Computation of Output: 

• The output is computed as a weighted sum of the values. 

• The weight assigned to each value is determined by a compatibility function of the 

query with the corresponding key. 



3.2.1 Scaled Dot-Product Attention  
1. Introduction to Scaled Dot-Product Attention 

• We call our particular attention "Scaled Dot-Product Attention". 

• The input consists of queries and keys of dimension ${dk}$, and values of dimension 

${dv}$. 

2. Computation of Scaled Dot-Product Attention 

• We compute the dot products of the query with all keys, divide each by ${dk}$, and 

apply a softmax function to obtain the weights on the values. 

• In practice, the attention function is computed on a set of queries simultaneously, 

packed together into a matrix ${Q}$. 

• The keys and values are also packed together into matrices ${K}$ and ${V}$. 

• The matrix of outputs is computed using the formula: $$\operatorname{Attention}(Q, 

K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$$ 

3. Comparison of Additive and Dot-Product Attention 

• The two most commonly used attention functions are additive attention and dot-

product (multiplicative) attention. 

• Dot-product attention is identical to our algorithm, except for the scaling factor of 

${\frac{1}{\sqrt{d_{k}}}}$. 

• Additive attention computes the compatibility function using a feed-forward network 

with a single hidden layer. 

• While the two mechanisms perform similarly for small values of ${d_{k}}$, additive 

attention outperforms dot-product attention without scaling for larger values of 

${d_{k}}$. 

4. Potential Issues with Dot-Product Attention 

• For large values of ${d_{k}}$, the dot products grow large in magnitude, pushing the 

softmax function into regions where it has extremely small gradients. 

• To counteract this effect, we scale the dot products by ${d_{k}}$. 

3.2.2 Multi-Head Attention  
1. Introduction to Multi-Head Attention 

• Instead of performing a single attention function with dmodel-dimensional keys, values, 

and queries, it is beneficial to linearly project them h times with different learned linear 

projections. 

• The projected versions of queries, keys, and values are then used to perform the 

attention function in parallel, resulting in dv-dimensional output values. 



• Multi-head attention allows the model to jointly attend to information from different 

representation subspaces at different positions. 

2. Explanation of Dot Product and Variance 

• To illustrate why the dot products get large, assume that the components of q and k are 

independent random variables with mean 0 and variance. 

• The dot product, q · k = $${ }_{i=1}^{d_{k}} q_{i} k_{i}$$, has a mean of 0 and a variance 

of dk. 

3. Mathematical representation of the MultiHead function 

• The MultiHead function is represented as: 

$$\operatorname{MultiHead}(Q, K, V)=\operatorname{Concat}(\text{head}_1, ..., 

\text{head}_h) W^O$$ 

• Where each head is computed as: 

$$\text{head}_i = \operatorname{Attention}(Q W_i^Q, K W_i^K, V W_i^V)$$ 

• The parameter matrices for the projections are denoted as: $$W_i^Q \in 

\mathbb{R}^{d_{\text {model }} \times d_{k}}, W_i^K \in \mathbb{R}^{d_{\text {model 

}} \times d_{k}}, W_i^V \in \mathbb{R}^{d_{\text {model }} \times d_{v}}$$ 

• The final projection matrix is represented as: $$W^O \in \mathbb{R}^{d_v \times 

d_{\text{model}}}$$ 

4. Choice of Parameters in the Multi-Head Attention 

• In this work, h = 8 parallel attention layers, or heads, are employed. 

• Each head uses dk = dv = dmodel/h = 64. 

• Due to the reduced dimension of each head, the total computational cost is similar to 

that of single-head attention with full dimensionality. 

3.2.3 Applications of Attention in our Model  
1. Applications of Attention in the Model: 

• The text discusses the applications of attention in the model. 

2. Encoder-decoder Attention Layers: 

• These layers involve queries from the previous decoder layer and memory keys and 

values from the output of the encoder. 

• This allows each position in the decoder to attend to all positions in the input sequence. 

• This mimics the typical encoder-decoder attention mechanisms in sequence-to-

sequence models. 



3. Encoder Self-attention Layers: 

• The encoder also contains self-attention layers. 

• In these layers, all keys, values, and queries come from the output of the previous layer 

in the encoder. 

• Each position in the encoder can attend to all positions in the previous layer of the 

encoder. 

4. Decoder Self-attention Layers: 

• Similar to the encoder self-attention layers, the decoder self-attention layers allow each 

position in the decoder to attend to all positions in the decoder up to and including that 

position. 

5. Preventing Leftward Information Flow: 

• To preserve the auto-regressive property in the decoder, leftward information flow 

needs to be prevented. 

• This is implemented inside scaled dot-product attention by masking out values in the 

input of the softmax that correspond to illegal connections. 

• Specific details and a reference figure are mentioned. 

3.3 Position-wise Feed-Forward Networks  
1. Introduction to Position-wise Feed-Forward Networks 

• In addition to attention sub-layers, each of the layers in our encoder and decoder 

contains a fully connected feed-forward network. 

• The feed-forward network is applied to each position separately and identically. 

• It consists of two linear transformations with a ReLU activation in between. 

• The feed-forward network can be represented by the equation: 

$$\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}$$ 

2. Explanation of the Equation 

• The equation represents the feed-forward network function $\operatorname{FFN}(x)$. 

• It consists of two linear transformations. 

• The first linear transformation is given by: $$x W_{1}+b_{1}$$ 

• The ReLU activation function $\max(0, \cdot)$ is applied element-wise to the output of 

the first linear transformation. 

• The second linear transformation is given by: $$\text{output of ReLU activation 

function} \times W_{2}+b_{2}$$ 

3. Variation in Parameters 



• While the linear transformations are the same across different positions, they use 

different parameters from layer to layer. 

• This means that each layer in the encoder and decoder has its own set of parameters for 

the feed-forward network. 

4. Convolution Interpretation 

• Another way of describing the feed-forward network is as two convolutions with kernel 

size 1. 

5. Dimensionality 

• The dimensionality of the input and output of the feed-forward network is 

$d_{\text{model}} = 512$. 

• The inner-layer of the feed-forward network has dimensionality $d_{\text{ff}} = 2048$. 

3.4 Embeddings and Softmax  
1. Embeddings and Softmax in Sequence Transduction Models: 

• Learned embeddings are used to convert input tokens and output tokens to vectors of 

dimension dmodel. 

• A learned linear transformation and softmax function are used to convert the decoder 

output to predicted next-token probabilities. 

• In the model discussed, the same weight matrix is shared between the two embedding 

layers and the pre-softmax linear transformation. 

• The weights in the embedding layers are multiplied by dmodel. 

2. Reference to a Previous Study: 

• The approach of sharing the weight matrix between embedding layers and the pre-

softmax linear transformation is similar to a study mentioned as [(<>)24]. 

3.5 Positional Encoding  
1. Introduction to Positional Encoding 

• Since the model contains no recurrence and no convolution, the order of the sequence 

needs to be encoded. 

• "Positional encodings" are added to the input embeddings. 

2. Table of Maximum Path Lengths and Complexity per Layer 

• Table 1: Maximum path lengths, per-layer complexity, and minimum number of 

sequential operations for different layer types. 



• Lists the layer types, their complexity per layer, sequential operations, and maximum 

path length. 

• Provides values for self-attention, recurrent, convolutional, and restricted self-attention 

layers. 

3. Details of Positional Encoding 

• Positional encodings are added to the bottoms of the encoder and decoder stacks. 

• The positional encodings have the same dimension as the embeddings. 

• There are choices of positional encodings, including learned and fixed options. 

4. Sine and Cosine Functions for Positional Encoding 

• The chosen positional encoding involves using sine and cosine functions of different 

frequencies. 

• Formulas for positional encodings: $$PE_{(pos, 2i)} = 

\sin(\frac{pos}{10000^{2i/d_{model}}})$$ and $$PE_{(pos, 2i+1)} = 

\cos(\frac{pos}{10000^{2i/d_{model}}})$$ 

• Each dimension of the positional encoding corresponds to a sinusoid with wavelengths 

forming a geometric progression. 

• The sinusoidal encoding allows the model to easily learn to attend by relative positions. 

5. Comparison of Learned and Sinusoidal Positional Embeddings 

• Learned positional embeddings were also tested and found to produce similar results. 

• The sinusoidal version was chosen because it may allow the model to handle longer 

sequence lengths than encountered during training. 

4 Why Self-Attention  
1. Introduction: 

• The section discusses the comparison between self-attention layers, recurrent layers, 

and convolutional layers. 

• These layers are used for mapping variable-length sequences to another sequence with 

equal length. 

2. Desiderata for Self-Attention: 

• Three desiderata are considered to motivate the use of self-attention: computational 

complexity per layer, parallelizability, and path length between long-range 

dependencies in the network. 

3. Comparison of Computational Complexity: 



• Self-attention layers have a constant number of sequentially executed operations, while 

recurrent layers require O(n) sequential operations. 

• Self-attention layers are faster than recurrent layers when the sequence length is 

smaller than the representation dimensionality. 

• To address computational performance for very long sequences, self-attention can be 

restricted to a neighborhood of size r around the output position. 

4. Comparison with Convolutional Layers: 

• A single convolutional layer with kernel width k < n does not connect all input and 

output positions, requiring a stack of O(n/k) or O(logk(n)) convolutional layers. 

• Convolutional layers are generally more expensive than recurrent layers, but separable 

convolutions decrease the complexity considerably compared to contiguous kernels. 

5. Interpretable Models: 

• Self-attention could lead to more interpretable models. 

• Attention distributions from models can provide insights into the syntactic and 

semantic structure of sentences. 

5 Training  
1. Training Regime: 

• This section focuses on describing the training regime for the models. 

• It implies that there are specific methods or approaches for training the models, but 

does not provide further details. 

5.1 Training Data and Batching  
1. Training Data and Dataset Description: 

• The training data used is the standard WMT 2014 English-German dataset, which 

consists of about 4.5 million sentence pairs. 

• Byte-pair encoding is used to encode the sentences, resulting in a shared source-target 

vocabulary of approximately 37,000 tokens. 

• For English-French, a significantly larger WMT 2014 English-French dataset was used, 

consisting of 36 million sentences. 

• The tokens in English-French were split into a 32,000-word piece vocabulary. 

2. Batching of Sentence Pairs: 

• Sentence pairs were batched together based on approximate sequence length. 

• Each training batch contained a set of sentence pairs with around 25,000 source tokens 

and 25,000 target tokens. 



5.2 Hardware and Schedule  
1. Hardware and Training Speed: 

• The models were trained on one machine with 8 NVIDIA P100 GPUs. 

• The training step for the base models took approximately 0.4 seconds each. 

• The base models were trained for a total of 100,000 steps or 12 hours. 

• The big models, as described in Table 3, had a longer step time of 1.0 seconds. 

• The big models were trained for 300,000 steps, equivalent to 3.5 days. 

5.3 Optimizer  
1. Introduction to the Optimizer 

• We used the Adam optimizer [(17)] with $\beta_1=0.9$, $\beta_2=0.98$, and 

$\epsilon=10^{-9}$. 

• The learning rate was varied over the course of training according to the formula: 

2. Formula for Learning Rate 

• Learning Rate: $\text{lrate} = d_{\text{model}}^{-0.5} \cdot \min(\text{step\_num}^{-

0.5}, \text{step\_num} \cdot \text{warmup\_steps}^{-1.5})$ 

3. Explanation of Learning Rate Formula 

• This formula corresponds to increasing the learning rate linearly for the first 

$\text{warmup\_steps}$ training steps, and decreasing it thereafter proportionally to 

the inverse square root of the step number. 

• We used $\text{warmup\_steps} = 4000$. 

5.4 Regularization  
1. Regularization: 

• Three types of regularization are employed during training. 

• Residual Dropout is applied to the output of each sub-layer before it is added to the sub-

layer input and normalized. 

• Dropout is also applied to the sums of the embeddings and positional encodings in both 

the encoder and decoder stacks. 

• For the base model, a dropout rate of Pdrop = 0.1 is used. 

2. Comparison of BLEU scores and training cost: 

• Table 2 presents comparisons of BLEU scores and training costs of various models on 

English-to-German and English-to-French newstest2014 tests. 



• The Transformer model achieves better BLEU scores than previous state-of-the-art 

models while having a fraction of the training cost. 

• The table lists the models, their BLEU scores, and their training costs in FLOPs. 

3. Label Smoothing: 

• During training, label smoothing is employed with a value of ls = 0.1. 

• Label smoothing may hurt perplexity but improves accuracy and BLEU score. 

6 Results  
1. Machine Translation: 

• The big transformer model outperforms previously reported models on the WMT 2014 

English-to-German translation task, achieving a new state-of-the-art BLEU score of 28.4. 

• The configuration and training time of this model are described. 

• The base model also surpasses all previously published models and ensembles, at a 

lower training cost. 

2. Machine Translation (Continued): 

• The big model achieves a BLEU score of 41.0 on the WMT 2014 English-to-French 

translation task, outperforming previously published single models at a lower training 

cost. 

• An adjustment in the dropout rate is mentioned for this model. 

3. Hyperparameters and Inference: 

• The process of averaging the last few checkpoints to obtain the final model is described. 

• Details on the hyperparameters used in beam search and length penalty are provided. 

• The maximum output length during inference is set. 

• Termination of inference is mentioned if possible. 

4. Results Summary: 

• Table 2 summarizes the results and compares the translation quality and training costs 

to other model architectures from the literature. 

• The estimation of the floating point operations used to train a model is explained. 

6.2 Model Variations  
1. Introduction to Model Variations 

• We want to evaluate the importance of different components of the Transformer model. 

• We varied our base model in different ways and measured the change in performance 

on English-to-German translation on the development set. 



• We used beam search for evaluation. 

2. Variation in Attention Heads and Dimensions 

• Table 3 shows the variations on the Transformer architecture. 

• In rows (A), we vary the number of attention heads and the attention key and value 

dimensions, while keeping the amount of computation constant. 

• Single-head attention is 0.9 BLEU worse than the best setting, and having too many 

heads also decreases quality. 

3. Performance on English-to-German Translation 

• The metrics for performance on English-to-German translation are listed in Table 3. 

• Perplexities are per-wordpiece, according to our byte-pair encoding, and should not be 

compared to per-word perplexities. 

4. Further Variations in Model Parameters 

• Rows (B) show the variation in attention key size, where reducing the key size hurts 

model quality. 

• Rows (C) and (D) demonstrate that bigger models perform better, and dropout is useful 

for avoiding overfitting. 

• In row (E), we replace sinusoidal positional encoding with learned positional 

embeddings and observe similar results to the base model. 

7 Conclusion  
1. Introduction to the Transformer: 

• The Transformer is presented as the first sequence transduction model based entirely 

on attention. 

• It replaces the recurrent layers commonly used in encoder-decoder architectures with 

multi-headed self-attention. 

2. Advantages of the Transformer for translation tasks: 

• The Transformer can be trained much faster than architectures based on recurrent or 

convolutional layers. 

• It achieves a new state of the art in translation tasks such as English-to-German and 

English-to-French. 

3. Future plans for attention-based models: 

• The authors are excited about the future of attention-based models and plan to apply 

them to other tasks. 



• They intend to extend the Transformer to handle input and output modalities other 

than text, such as images, audio, and video. 

• Investigating local, restricted attention mechanisms to efficiently handle large inputs 

and outputs is another goal. 

• Making generation less sequential is also a research goal. 

4. Availability of the code and acknowledgements: 

• The code used to train and evaluate the models is available at the provided GitHub link. 

• The authors express their gratitude to Nal Kalchbrenner and Stephan Gouws for their 

comments, corrections, and inspiration. 


