Attention Is All You Need

1 Introduction

1. Introduction:

o Establishes the use of recurrent neural networks (RNNs), long short-term memory
(LSTM), and gated recurrent neural networks as state-of-the-art approaches in
sequence modeling and transduction problems.

e Mentions various efforts to push the boundaries of recurrent language models and
encoder-decoder architectures.

2. Contributions and Key People:

e Describes the equal contributions and involvement of different individuals in the
development and evaluation of the proposed idea.

o Notes the affiliation and contributions of individuals from Google Brain and Google
Research.

e Provides information about the conference where this work was presented.

3. Limitations of Recurrent Models:

e Explains the sequential nature of recurrent models and their inherent difficulty in
parallelization, particularly with longer sequence lengths.

e Mentions recent efforts to improve computational efficiency through factorization tricks
and conditional computation, but states that the constraint of sequential computation
remains.

4. Attention Mechanisms in Sequence Modeling:

o Highlights the use of attention mechanisms in sequence modeling and transduction
models to capture dependencies without regard to the distance between elements.

e Points out the usual combination of attention mechanisms with recurrent networks,
except for a few cases.

5. Proposal of the Transformer Model:

e Introduces the Transformer as a model architecture that eliminates recurrence and
relies solely on an attention mechanism to establish global dependencies between input
and output.

e Emphasizes the Transformer's significant parallelization capabilities and its ability to
achieve state-of-the-art translation quality with relatively short training time.



2 Background

1. Background of reducing sequential computation:

e The goal of reducing sequential computation forms the foundation of various models
like Extended Neural GPU, ByteNet, and ConvS2S.

o These models use convolutional neural networks to compute hidden representations in
parallel for all input and output positions.

o The number of operations required to relate signals from distant positions is reduced in
the Transformer as compared to ConvS2S and ByteNet.

o However, this reduction in operations leads to a decrease in effective resolution, which
is countered by Multi-Head Attention.

2. Self-attention mechanism:

e Self-attention, also known as intra-attention, is an attention mechanism that relates
different positions within a single sequence to compute a representation of the
sequence.

o Self-attention has been successfully used in various tasks such as reading
comprehension, abstractive summarization, textual entailment, and learning task-
independent sentence representations.

3. End-to-end memory networks and comparison to previous models:

¢ End-to-end memory networks use a recurrent attention mechanism and have
performed well on simple-language question answering and language modeling tasks.

e The Transformer is the first transduction model that relies entirely on self-attention to
compute representations of its input and output, without using sequence-aligned RNNs
or convolution.

e The advantages of self-attention over models like Extended Neural GPU, ByteNet, and
ConvS2S will be discussed in the following sections.

3 Model Architecture
1. Model Architecture:

e Most competitive neural sequence transduction models have an encoder-decoder
structure.

e The encoder maps an input sequence of symbol representations to a sequence of
continuous representations.

e The decoder generates an output sequence of symbols based on the continuous
representations.

o The model is auto-regressive, meaning it uses previously generated symbols as
additional input when generating the next symbol.

2. The Transformer Architecture:



e The Transformer follows the general encoder-decoder structure.

o [t utilizes stacked self-attention and point-wise, fully connected layers for both the
encoder and decoder.

o Figure 1 shows the visual representation of the encoder and decoder components.

3.1 Encoder and Decoder Stacks
1. Encoder Stack:

e The encoder stack consists of N = 6 identical layers.

o Each layer has two sub-layers: a multi-head self-attention mechanism and a position-
wise fully connected feed-forward network.

o Residual connections and layer normalization are employed around each sub-layer.

e The output dimensions of all sub-layers and embedding layers are dmodel = 512.

2. Decoder Stack:

o The decoder stack also consists of N = 6 identical layers.

e In addition to the two sub-layers in each encoder layer, the decoder has a third sub-
layer.

e The third sub-layer performs multi-head attention over the output of the encoder stack.

e Similar to the encoder, residual connections and layer normalization are used around
each sub-layer.

e The self-attention sub-layer in the decoder stack is modified to prevent positions from
attending to subsequent positions.

o Masking and offsetting of output embeddings ensure that predictions for a position
depend only on known outputs at positions less than that position.

3.2 Attention

1. Introduction of Attention:
e The text introduces the concept of attention.

2. Definition of Attention Function:

An attention function is described as a mapping between a query and a set of key-value
pairs.
e The query, keys, values, and output are all vectors.

3. Computation of Output:

e The output is computed as a weighted sum of the values.
o The weight assigned to each value is determined by a compatibility function of the
query with the corresponding key.



3.2.1 Scaled Dot-Product Attention
1. Introduction to Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention".
The input consists of queries and keys of dimension ${dk}$, and values of dimension

${dv}$.

2. Computation of Scaled Dot-Product Attention

We compute the dot products of the query with all keys, divide each by ${dk}$, and
apply a softmax function to obtain the weights on the values.

In practice, the attention function is computed on a set of queries simultaneously,
packed together into a matrix ${Q}$.

The keys and values are also packed together into matrices ${K}$ and ${V}$.

The matrix of outputs is computed using the formula: $$\operatorname{Attention}(Q,
K, V)=\operatorname{softmax}\left(\frac{Q K*{T}}{\sqrt{d_{k}}}\right) V$$

3. Comparison of Additive and Dot-Product Attention

The two most commonly used attention functions are additive attention and dot-
product (multiplicative) attention.

Dot-product attention is identical to our algorithm, except for the scaling factor of
${\frac{1}{\sqrt{d_{k}}}}$.

Additive attention computes the compatibility function using a feed-forward network
with a single hidden layer.

While the two mechanisms perform similarly for small values of ${d_{k}}$, additive
attention outperforms dot-product attention without scaling for larger values of

${d_{k}}$.

4. Potential Issues with Dot-Product Attention

For large values of ${d_{k}}$, the dot products grow large in magnitude, pushing the
softmax function into regions where it has extremely small gradients.
To counteract this effect, we scale the dot products by ${d_{k}}$.

3.2.2 Multi-Head Attention
1. Introduction to Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values,
and queries, it is beneficial to linearly project them h times with different learned linear
projections.

The projected versions of queries, keys, and values are then used to perform the
attention function in parallel, resulting in dv-dimensional output values.



e Multi-head attention allows the model to jointly attend to information from different
representation subspaces at different positions.

2. Explanation of Dot Product and Variance

e Toillustrate why the dot products get large, assume that the components of q and k are
independent random variables with mean 0 and variance.

e The dot product, q - k = $${ }_{i=1}*{d_{k}} q_{i} k_{i}$$, has a mean of 0 and a variance
of dk.

3. Mathematical representation of the MultiHead function
e The MultiHead function is represented as:

$$\operatorname{MultiHead}(Q, K, V)=\operatorname{Concat}(\text{head}_1, ..,
\text{head}_h) W~0$$

e  Where each head is computed as:
$$\text{head}_i = \operatorname{Attention}(Q W_i*Q, K W_i"K, V W_i"V)$$

e The parameter matrices for the projections are denoted as: $$W_i*Q \in
\mathbb{R}"*{d_{\text {model }} \times d_{k}}, W_i*K \in \mathbb{R}"*{d_{\text {model
3} \times d_{k}}, W_i"V \in \mathbb{R}*{d_{\text {model }} \times d_{v}}$$

e The final projection matrix is represented as: $$W~0 \in \mathbb{R}*{d_v \times
d_{\text{model}}}$$

4. Choice of Parameters in the Multi-Head Attention

e In this work, h = 8 parallel attention layers, or heads, are employed.

e Each head uses dk = dv =dmodel/h = 64.

e Due to the reduced dimension of each head, the total computational cost is similar to
that of single-head attention with full dimensionality.

3.2.3 Applications of Attention in our Model
1. Applications of Attention in the Model:

The text discusses the applications of attention in the model.
2. Encoder-decoder Attention Layers:

e These layers involve queries from the previous decoder layer and memory keys and
values from the output of the encoder.

o This allows each position in the decoder to attend to all positions in the input sequence.

e This mimics the typical encoder-decoder attention mechanisms in sequence-to-
sequence models.



3. Encoder Self-attention Layers:

The encoder also contains self-attention layers.

In these layers, all keys, values, and queries come from the output of the previous layer
in the encoder.

Each position in the encoder can attend to all positions in the previous layer of the
encoder.

4. Decoder Self-attention Layers:

Similar to the encoder self-attention layers, the decoder self-attention layers allow each
position in the decoder to attend to all positions in the decoder up to and including that
position.

5. Preventing Leftward Information Flow:

To preserve the auto-regressive property in the decoder, leftward information flow
needs to be prevented.

This is implemented inside scaled dot-product attention by masking out values in the
input of the softmax that correspond to illegal connections.

Specific details and a reference figure are mentioned.

3.3 Position-wise Feed-Forward Networks

1. Introduction to Position-wise Feed-Forward Networks

In addition to attention sub-layers, each of the layers in our encoder and decoder
contains a fully connected feed-forward network.

The feed-forward network is applied to each position separately and identically.
It consists of two linear transformations with a ReLU activation in between.

The feed-forward network can be represented by the equation:
$$\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}$$

2. Explanation of the Equation

The equation represents the feed-forward network function $\operatorname{FFN}(x)$.
It consists of two linear transformations.

The first linear transformation is given by: $$x W_{1}+b_{1}$$

The ReLU activation function $\max(0, \cdot)$ is applied element-wise to the output of
the first linear transformation.

The second linear transformation is given by: $$\text{output of ReLU activation
function} \times W_{2}+b_{2}$$

3. Variation in Parameters



While the linear transformations are the same across different positions, they use
different parameters from layer to layer.

This means that each layer in the encoder and decoder has its own set of parameters for
the feed-forward network.

4. Convolution Interpretation

Another way of describing the feed-forward network is as two convolutions with kernel
size 1.

5. Dimensionality

The dimensionality of the input and output of the feed-forward network is
$d_{\text{model}} = 5128.
The inner-layer of the feed-forward network has dimensionality $d_{\text{ff}} = 20488$.

3.4 Embeddings and Softmax

1. Embeddings and Softmax in Sequence Transduction Models:

Learned embeddings are used to convert input tokens and output tokens to vectors of
dimension dmodel.

Alearned linear transformation and softmax function are used to convert the decoder
output to predicted next-token probabilities.

In the model discussed, the same weight matrix is shared between the two embedding
layers and the pre-softmax linear transformation.

The weights in the embedding layers are multiplied by dmodel.

2. Reference to a Previous Study:

The approach of sharing the weight matrix between embedding layers and the pre-
softmax linear transformation is similar to a study mentioned as [(<>)24].

3.5 Positional Encoding
1. Introduction to Positional Encoding

Since the model contains no recurrence and no convolution, the order of the sequence
needs to be encoded.
"Positional encodings" are added to the input embeddings.

2. Table of Maximum Path Lengths and Complexity per Layer

Table 1: Maximum path lengths, per-layer complexity, and minimum number of
sequential operations for different layer types.



Lists the layer types, their complexity per layer, sequential operations, and maximum
path length.

Provides values for self-attention, recurrent, convolutional, and restricted self-attention
layers.

3. Details of Positional Encoding

Positional encodings are added to the bottoms of the encoder and decoder stacks.
The positional encodings have the same dimension as the embeddings.
There are choices of positional encodings, including learned and fixed options.

4. Sine and Cosine Functions for Positional Encoding

The chosen positional encoding involves using sine and cosine functions of different
frequencies.

Formulas for positional encodings: $$PE_{(pos, 2i)} =
\sin(\frac{pos}{10000~{2i/d_{model}}})$$ and $$PE_{(pos, 2i+1)} =
\cos(\frac{pos}{100007{2i/d_{model}}})$$

Each dimension of the positional encoding corresponds to a sinusoid with wavelengths
forming a geometric progression.

The sinusoidal encoding allows the model to easily learn to attend by relative positions.

5. Comparison of Learned and Sinusoidal Positional Embeddings

Learned positional embeddings were also tested and found to produce similar results.
The sinusoidal version was chosen because it may allow the model to handle longer
sequence lengths than encountered during training.

4 Why Self-Attention

1

. Introduction:

The section discusses the comparison between self-attention layers, recurrent layers,
and convolutional layers.

These layers are used for mapping variable-length sequences to another sequence with
equal length.

. Desiderata for Self-Attention:

Three desiderata are considered to motivate the use of self-attention: computational
complexity per layer, parallelizability, and path length between long-range
dependencies in the network.

. Comparison of Computational Complexity:



Self-attention layers have a constant number of sequentially executed operations, while
recurrent layers require O(n) sequential operations.

Self-attention layers are faster than recurrent layers when the sequence length is
smaller than the representation dimensionality.

To address computational performance for very long sequences, self-attention can be
restricted to a neighborhood of size r around the output position.

4. Comparison with Convolutional Layers:

A single convolutional layer with kernel width k < n does not connect all input and
output positions, requiring a stack of O(n/k) or O(logk(n)) convolutional layers.
Convolutional layers are generally more expensive than recurrent layers, but separable
convolutions decrease the complexity considerably compared to contiguous kernels.

5. Interpretable Models:

Self-attention could lead to more interpretable models.
Attention distributions from models can provide insights into the syntactic and
semantic structure of sentences.

5 Training
1. Training Regime:

This section focuses on describing the training regime for the models.
It implies that there are specific methods or approaches for training the models, but
does not provide further details.

5.1 Training Data and Batching
1. Training Data and Dataset Description:

The training data used is the standard WMT 2014 English-German dataset, which
consists of about 4.5 million sentence pairs.

Byte-pair encoding is used to encode the sentences, resulting in a shared source-target
vocabulary of approximately 37,000 tokens.

For English-French, a significantly larger WMT 2014 English-French dataset was used,
consisting of 36 million sentences.

The tokens in English-French were split into a 32,000-word piece vocabulary.

2. Batching of Sentence Pairs:

Sentence pairs were batched together based on approximate sequence length.
Each training batch contained a set of sentence pairs with around 25,000 source tokens
and 25,000 target tokens.



5.2 Hardware and Schedule

1. Hardware and Training Speed:

The models were trained on one machine with 8 NVIDIA P100 GPUs.

The training step for the base models took approximately 0.4 seconds each.
The base models were trained for a total of 100,000 steps or 12 hours.

The big models, as described in Table 3, had a longer step time of 1.0 seconds.
The big models were trained for 300,000 steps, equivalent to 3.5 days.

5.3 Optimizer

1. Introduction to the Optimizer

We used the Adam optimizer [(17)] with $\beta_1=0.9%, $\beta_2=0.98%, and
$\epsilon=10"{-9}$.
The learning rate was varied over the course of training according to the formula:

2. Formula for Learning Rate

Learning Rate: $\text{lrate} = d_{\text{model}}"{-0.5} \cdot \min(\text{step\_num}*{-
0.5}, \text{step\_num} \cdot \text{warmup)\_steps}*{-1.5})$

3. Explanation of Learning Rate Formula

This formula corresponds to increasing the learning rate linearly for the first
$\text{warmup)_steps}$ training steps, and decreasing it thereafter proportionally to
the inverse square root of the step number.

We used $\text{warmup)\_steps} = 4000$.

5.4 Regularization
1. Regularization:

Three types of regularization are employed during training.

Residual Dropout is applied to the output of each sub-layer before it is added to the sub-
layer input and normalized.

Dropout is also applied to the sums of the embeddings and positional encodings in both
the encoder and decoder stacks.

For the base model, a dropout rate of Pdrop = 0.1 is used.

2. Comparison of BLEU scores and training cost:

Table 2 presents comparisons of BLEU scores and training costs of various models on
English-to-German and English-to-French newstest2014 tests.



The Transformer model achieves better BLEU scores than previous state-of-the-art
models while having a fraction of the training cost.
The table lists the models, their BLEU scores, and their training costs in FLOPs.

3. Label Smoothing:

During training, label smoothing is employed with a value of Bls = 0.1.
Label smoothing may hurt perplexity but improves accuracy and BLEU score.

6 Results

1. Machine Translation:

The big transformer model outperforms previously reported models on the WMT 2014
English-to-German translation task, achieving a new state-of-the-art BLEU score of 28.4.
The configuration and training time of this model are described.

The base model also surpasses all previously published models and ensembles, at a
lower training cost.

2. Machine Translation (Continued):

The big model achieves a BLEU score of 41.0 on the WMT 2014 English-to-French
translation task, outperforming previously published single models at a lower training
cost.

An adjustment in the dropout rate is mentioned for this model.

3. Hyperparameters and Inference:

The process of averaging the last few checkpoints to obtain the final model is described.
Details on the hyperparameters used in beam search and length penalty are provided.
The maximum output length during inference is set.

Termination of inference is mentioned if possible.

4. Results Summary:

Table 2 summarizes the results and compares the translation quality and training costs
to other model architectures from the literature.
The estimation of the floating point operations used to train a model is explained.

6.2 Model Variations

1. Introduction to Model Variations

We want to evaluate the importance of different components of the Transformer model.
We varied our base model in different ways and measured the change in performance
on English-to-German translation on the development set.



We used beam search for evaluation.

2. Variation in Attention Heads and Dimensions

Table 3 shows the variations on the Transformer architecture.

In rows (A), we vary the number of attention heads and the attention key and value
dimensions, while keeping the amount of computation constant.

Single-head attention is 0.9 BLEU worse than the best setting, and having too many
heads also decreases quality.

3. Performance on English-to-German Translation

The metrics for performance on English-to-German translation are listed in Table 3.
Perplexities are per-wordpiece, according to our byte-pair encoding, and should not be
compared to per-word perplexities.

4. Further Variations in Model Parameters

Rows (B) show the variation in attention key size, where reducing the key size hurts
model quality.

Rows (C) and (D) demonstrate that bigger models perform better, and dropout is useful
for avoiding overfitting.

In row (E), we replace sinusoidal positional encoding with learned positional
embeddings and observe similar results to the base model.

7 Conclusion
1. Introduction to the Transformer:

The Transformer is presented as the first sequence transduction model based entirely
on attention.

It replaces the recurrent layers commonly used in encoder-decoder architectures with
multi-headed self-attention.

2. Advantages of the Transformer for translation tasks:

The Transformer can be trained much faster than architectures based on recurrent or
convolutional layers.

It achieves a new state of the art in translation tasks such as English-to-German and
English-to-French.

3. Future plans for attention-based models:

The authors are excited about the future of attention-based models and plan to apply
them to other tasks.



e Theyintend to extend the Transformer to handle input and output modalities other
than text, such as images, audio, and video.

e Investigating local, restricted attention mechanisms to efficiently handle large inputs
and outputs is another goal.

e Making generation less sequential is also a research goal.

4. Availability of the code and acknowledgements:

The code used to train and evaluate the models is available at the provided GitHub link.

The authors express their gratitude to Nal Kalchbrenner and Stephan Gouws for their
comments, corrections, and inspiration.



