
Attention Is All You Need

1 Introduction
1. Introduction:

• Establishes the use of recurrent neural networks (RNNs), long short-term memory

(LSTM), and gated recurrent neural networks as state-of-the-art approaches in

sequence modeling and transduction problems.

• Mentions various efforts to push the boundaries of recurrent language models and

encoder-decoder architectures.

2. Contributions and Key People:

• Describes the equal contributions and involvement of different individuals in the

development and evaluation of the proposed idea.

• Notes the affiliation and contributions of individuals from Google Brain and Google

Research.

• Provides information about the conference where this work was presented.

3. Limitations of Recurrent Models:

• Explains the sequential nature of recurrent models and their inherent difficulty in

parallelization, particularly with longer sequence lengths.

• Mentions recent efforts to improve computational efficiency through factorization tricks

and conditional computation, but states that the constraint of sequential computation

remains.

4. Attention Mechanisms in Sequence Modeling:

• Highlights the use of attention mechanisms in sequence modeling and transduction

models to capture dependencies without regard to the distance between elements.

• Points out the usual combination of attention mechanisms with recurrent networks,

except for a few cases.

5. Proposal of the Transformer Model:

• Introduces the Transformer as a model architecture that eliminates recurrence and

relies solely on an attention mechanism to establish global dependencies between input

and output.

• Emphasizes the Transformer's significant parallelization capabilities and its ability to

achieve state-of-the-art translation quality with relatively short training time.

2 Background
1. Background of reducing sequential computation:

• The goal of reducing sequential computation forms the foundation of various models

like Extended Neural GPU, ByteNet, and ConvS2S.

• These models use convolutional neural networks to compute hidden representations in

parallel for all input and output positions.

• The number of operations required to relate signals from distant positions is reduced in

the Transformer as compared to ConvS2S and ByteNet.

• However, this reduction in operations leads to a decrease in effective resolution, which

is countered by Multi-Head Attention.

2. Self-attention mechanism:

• Self-attention, also known as intra-attention, is an attention mechanism that relates

different positions within a single sequence to compute a representation of the

sequence.

• Self-attention has been successfully used in various tasks such as reading

comprehension, abstractive summarization, textual entailment, and learning task-

independent sentence representations.

3. End-to-end memory networks and comparison to previous models:

• End-to-end memory networks use a recurrent attention mechanism and have

performed well on simple-language question answering and language modeling tasks.

• The Transformer is the first transduction model that relies entirely on self-attention to

compute representations of its input and output, without using sequence-aligned RNNs

or convolution.

• The advantages of self-attention over models like Extended Neural GPU, ByteNet, and

ConvS2S will be discussed in the following sections.

3 Model Architecture
1. Model Architecture:

• Most competitive neural sequence transduction models have an encoder-decoder

structure.

• The encoder maps an input sequence of symbol representations to a sequence of

continuous representations.

• The decoder generates an output sequence of symbols based on the continuous

representations.

• The model is auto-regressive, meaning it uses previously generated symbols as

additional input when generating the next symbol.

2. The Transformer Architecture:

• The Transformer follows the general encoder-decoder structure.

• It utilizes stacked self-attention and point-wise, fully connected layers for both the

encoder and decoder.

• Figure 1 shows the visual representation of the encoder and decoder components.

3.1 Encoder and Decoder Stacks
1. Encoder Stack:

• The encoder stack consists of N = 6 identical layers.

• Each layer has two sub-layers: a multi-head self-attention mechanism and a position-

wise fully connected feed-forward network.

• Residual connections and layer normalization are employed around each sub-layer.

• The output dimensions of all sub-layers and embedding layers are dmodel = 512.

2. Decoder Stack:

• The decoder stack also consists of N = 6 identical layers.

• In addition to the two sub-layers in each encoder layer, the decoder has a third sub-

layer.

• The third sub-layer performs multi-head attention over the output of the encoder stack.

• Similar to the encoder, residual connections and layer normalization are used around

each sub-layer.

• The self-attention sub-layer in the decoder stack is modified to prevent positions from

attending to subsequent positions.

• Masking and offsetting of output embeddings ensure that predictions for a position

depend only on known outputs at positions less than that position.

3.2 Attention
1. Introduction of Attention:

• The text introduces the concept of attention.

2. Definition of Attention Function:

• An attention function is described as a mapping between a query and a set of key-value

pairs.

• The query, keys, values, and output are all vectors.

3. Computation of Output:

• The output is computed as a weighted sum of the values.

• The weight assigned to each value is determined by a compatibility function of the

query with the corresponding key.

3.2.1 Scaled Dot-Product Attention
1. Introduction to Scaled Dot-Product Attention

• We call our particular attention "Scaled Dot-Product Attention".

• The input consists of queries and keys of dimension ${dk}$, and values of dimension

${dv}$.

2. Computation of Scaled Dot-Product Attention

• We compute the dot products of the query with all keys, divide each by ${dk}$, and

apply a softmax function to obtain the weights on the values.

• In practice, the attention function is computed on a set of queries simultaneously,

packed together into a matrix ${Q}$.

• The keys and values are also packed together into matrices ${K}$ and ${V}$.

• The matrix of outputs is computed using the formula: $$\operatorname{Attention}(Q,

K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$$

3. Comparison of Additive and Dot-Product Attention

• The two most commonly used attention functions are additive attention and dot-

product (multiplicative) attention.

• Dot-product attention is identical to our algorithm, except for the scaling factor of

${\frac{1}{\sqrt{d_{k}}}}$.

• Additive attention computes the compatibility function using a feed-forward network

with a single hidden layer.

• While the two mechanisms perform similarly for small values of ${d_{k}}$, additive

attention outperforms dot-product attention without scaling for larger values of

${d_{k}}$.

4. Potential Issues with Dot-Product Attention

• For large values of ${d_{k}}$, the dot products grow large in magnitude, pushing the

softmax function into regions where it has extremely small gradients.

• To counteract this effect, we scale the dot products by ${d_{k}}$.

3.2.2 Multi-Head Attention
1. Introduction to Multi-Head Attention

• Instead of performing a single attention function with dmodel-dimensional keys, values,

and queries, it is beneficial to linearly project them h times with different learned linear

projections.

• The projected versions of queries, keys, and values are then used to perform the

attention function in parallel, resulting in dv-dimensional output values.

• Multi-head attention allows the model to jointly attend to information from different

representation subspaces at different positions.

2. Explanation of Dot Product and Variance

• To illustrate why the dot products get large, assume that the components of q and k are

independent random variables with mean 0 and variance.

• The dot product, q · k = $${ }_{i=1}^{d_{k}} q_{i} k_{i}$$, has a mean of 0 and a variance

of dk.

3. Mathematical representation of the MultiHead function

• The MultiHead function is represented as:

$$\operatorname{MultiHead}(Q, K, V)=\operatorname{Concat}(\text{head}_1, ...,

\text{head}_h) W^O$$

• Where each head is computed as:

$$\text{head}_i = \operatorname{Attention}(Q W_i^Q, K W_i^K, V W_i^V)$$

• The parameter matrices for the projections are denoted as: $$W_i^Q \in

\mathbb{R}^{d_{\text {model }} \times d_{k}}, W_i^K \in \mathbb{R}^{d_{\text {model

}} \times d_{k}}, W_i^V \in \mathbb{R}^{d_{\text {model }} \times d_{v}}$$

• The final projection matrix is represented as: $$W^O \in \mathbb{R}^{d_v \times

d_{\text{model}}}$$

4. Choice of Parameters in the Multi-Head Attention

• In this work, h = 8 parallel attention layers, or heads, are employed.

• Each head uses dk = dv = dmodel/h = 64.

• Due to the reduced dimension of each head, the total computational cost is similar to

that of single-head attention with full dimensionality.

3.2.3 Applications of Attention in our Model
1. Applications of Attention in the Model:

• The text discusses the applications of attention in the model.

2. Encoder-decoder Attention Layers:

• These layers involve queries from the previous decoder layer and memory keys and

values from the output of the encoder.

• This allows each position in the decoder to attend to all positions in the input sequence.

• This mimics the typical encoder-decoder attention mechanisms in sequence-to-

sequence models.

3. Encoder Self-attention Layers:

• The encoder also contains self-attention layers.

• In these layers, all keys, values, and queries come from the output of the previous layer

in the encoder.

• Each position in the encoder can attend to all positions in the previous layer of the

encoder.

4. Decoder Self-attention Layers:

• Similar to the encoder self-attention layers, the decoder self-attention layers allow each

position in the decoder to attend to all positions in the decoder up to and including that

position.

5. Preventing Leftward Information Flow:

• To preserve the auto-regressive property in the decoder, leftward information flow

needs to be prevented.

• This is implemented inside scaled dot-product attention by masking out values in the

input of the softmax that correspond to illegal connections.

• Specific details and a reference figure are mentioned.

3.3 Position-wise Feed-Forward Networks
1. Introduction to Position-wise Feed-Forward Networks

• In addition to attention sub-layers, each of the layers in our encoder and decoder

contains a fully connected feed-forward network.

• The feed-forward network is applied to each position separately and identically.

• It consists of two linear transformations with a ReLU activation in between.

• The feed-forward network can be represented by the equation:

$$\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}$$

2. Explanation of the Equation

• The equation represents the feed-forward network function $\operatorname{FFN}(x)$.

• It consists of two linear transformations.

• The first linear transformation is given by: $$x W_{1}+b_{1}$$

• The ReLU activation function $\max(0, \cdot)$ is applied element-wise to the output of

the first linear transformation.

• The second linear transformation is given by: $$\text{output of ReLU activation

function} \times W_{2}+b_{2}$$

3. Variation in Parameters

• While the linear transformations are the same across different positions, they use

different parameters from layer to layer.

• This means that each layer in the encoder and decoder has its own set of parameters for

the feed-forward network.

4. Convolution Interpretation

• Another way of describing the feed-forward network is as two convolutions with kernel

size 1.

5. Dimensionality

• The dimensionality of the input and output of the feed-forward network is

$d_{\text{model}} = 512$.

• The inner-layer of the feed-forward network has dimensionality $d_{\text{ff}} = 2048$.

3.4 Embeddings and Softmax
1. Embeddings and Softmax in Sequence Transduction Models:

• Learned embeddings are used to convert input tokens and output tokens to vectors of

dimension dmodel.

• A learned linear transformation and softmax function are used to convert the decoder

output to predicted next-token probabilities.

• In the model discussed, the same weight matrix is shared between the two embedding

layers and the pre-softmax linear transformation.

• The weights in the embedding layers are multiplied by dmodel.

2. Reference to a Previous Study:

• The approach of sharing the weight matrix between embedding layers and the pre-

softmax linear transformation is similar to a study mentioned as [(<>)24].

3.5 Positional Encoding
1. Introduction to Positional Encoding

• Since the model contains no recurrence and no convolution, the order of the sequence

needs to be encoded.

• "Positional encodings" are added to the input embeddings.

2. Table of Maximum Path Lengths and Complexity per Layer

• Table 1: Maximum path lengths, per-layer complexity, and minimum number of

sequential operations for different layer types.

• Lists the layer types, their complexity per layer, sequential operations, and maximum

path length.

• Provides values for self-attention, recurrent, convolutional, and restricted self-attention

layers.

3. Details of Positional Encoding

• Positional encodings are added to the bottoms of the encoder and decoder stacks.

• The positional encodings have the same dimension as the embeddings.

• There are choices of positional encodings, including learned and fixed options.

4. Sine and Cosine Functions for Positional Encoding

• The chosen positional encoding involves using sine and cosine functions of different

frequencies.

• Formulas for positional encodings: $$PE_{(pos, 2i)} =

\sin(\frac{pos}{10000^{2i/d_{model}}})$$ and $$PE_{(pos, 2i+1)} =

\cos(\frac{pos}{10000^{2i/d_{model}}})$$

• Each dimension of the positional encoding corresponds to a sinusoid with wavelengths

forming a geometric progression.

• The sinusoidal encoding allows the model to easily learn to attend by relative positions.

5. Comparison of Learned and Sinusoidal Positional Embeddings

• Learned positional embeddings were also tested and found to produce similar results.

• The sinusoidal version was chosen because it may allow the model to handle longer

sequence lengths than encountered during training.

4 Why Self-Attention
1. Introduction:

• The section discusses the comparison between self-attention layers, recurrent layers,

and convolutional layers.

• These layers are used for mapping variable-length sequences to another sequence with

equal length.

2. Desiderata for Self-Attention:

• Three desiderata are considered to motivate the use of self-attention: computational

complexity per layer, parallelizability, and path length between long-range

dependencies in the network.

3. Comparison of Computational Complexity:

• Self-attention layers have a constant number of sequentially executed operations, while

recurrent layers require O(n) sequential operations.

• Self-attention layers are faster than recurrent layers when the sequence length is

smaller than the representation dimensionality.

• To address computational performance for very long sequences, self-attention can be

restricted to a neighborhood of size r around the output position.

4. Comparison with Convolutional Layers:

• A single convolutional layer with kernel width k < n does not connect all input and

output positions, requiring a stack of O(n/k) or O(logk(n)) convolutional layers.

• Convolutional layers are generally more expensive than recurrent layers, but separable

convolutions decrease the complexity considerably compared to contiguous kernels.

5. Interpretable Models:

• Self-attention could lead to more interpretable models.

• Attention distributions from models can provide insights into the syntactic and

semantic structure of sentences.

5 Training
1. Training Regime:

• This section focuses on describing the training regime for the models.

• It implies that there are specific methods or approaches for training the models, but

does not provide further details.

5.1 Training Data and Batching
1. Training Data and Dataset Description:

• The training data used is the standard WMT 2014 English-German dataset, which

consists of about 4.5 million sentence pairs.

• Byte-pair encoding is used to encode the sentences, resulting in a shared source-target

vocabulary of approximately 37,000 tokens.

• For English-French, a significantly larger WMT 2014 English-French dataset was used,

consisting of 36 million sentences.

• The tokens in English-French were split into a 32,000-word piece vocabulary.

2. Batching of Sentence Pairs:

• Sentence pairs were batched together based on approximate sequence length.

• Each training batch contained a set of sentence pairs with around 25,000 source tokens

and 25,000 target tokens.

5.2 Hardware and Schedule
1. Hardware and Training Speed:

• The models were trained on one machine with 8 NVIDIA P100 GPUs.

• The training step for the base models took approximately 0.4 seconds each.

• The base models were trained for a total of 100,000 steps or 12 hours.

• The big models, as described in Table 3, had a longer step time of 1.0 seconds.

• The big models were trained for 300,000 steps, equivalent to 3.5 days.

5.3 Optimizer
1. Introduction to the Optimizer

• We used the Adam optimizer [(17)] with $\beta_1=0.9$, $\beta_2=0.98$, and

$\epsilon=10^{-9}$.

• The learning rate was varied over the course of training according to the formula:

2. Formula for Learning Rate

• Learning Rate: $\text{lrate} = d_{\text{model}}^{-0.5} \cdot \min(\text{step_num}^{-

0.5}, \text{step_num} \cdot \text{warmup_steps}^{-1.5})$

3. Explanation of Learning Rate Formula

• This formula corresponds to increasing the learning rate linearly for the first

warmup_steps training steps, and decreasing it thereafter proportionally to

the inverse square root of the step number.

• We used $\text{warmup_steps} = 4000$.

5.4 Regularization
1. Regularization:

• Three types of regularization are employed during training.

• Residual Dropout is applied to the output of each sub-layer before it is added to the sub-

layer input and normalized.

• Dropout is also applied to the sums of the embeddings and positional encodings in both

the encoder and decoder stacks.

• For the base model, a dropout rate of Pdrop = 0.1 is used.

2. Comparison of BLEU scores and training cost:

• Table 2 presents comparisons of BLEU scores and training costs of various models on

English-to-German and English-to-French newstest2014 tests.

• The Transformer model achieves better BLEU scores than previous state-of-the-art

models while having a fraction of the training cost.

• The table lists the models, their BLEU scores, and their training costs in FLOPs.

3. Label Smoothing:

• During training, label smoothing is employed with a value of ls = 0.1.

• Label smoothing may hurt perplexity but improves accuracy and BLEU score.

6 Results
1. Machine Translation:

• The big transformer model outperforms previously reported models on the WMT 2014

English-to-German translation task, achieving a new state-of-the-art BLEU score of 28.4.

• The configuration and training time of this model are described.

• The base model also surpasses all previously published models and ensembles, at a

lower training cost.

2. Machine Translation (Continued):

• The big model achieves a BLEU score of 41.0 on the WMT 2014 English-to-French

translation task, outperforming previously published single models at a lower training

cost.

• An adjustment in the dropout rate is mentioned for this model.

3. Hyperparameters and Inference:

• The process of averaging the last few checkpoints to obtain the final model is described.

• Details on the hyperparameters used in beam search and length penalty are provided.

• The maximum output length during inference is set.

• Termination of inference is mentioned if possible.

4. Results Summary:

• Table 2 summarizes the results and compares the translation quality and training costs

to other model architectures from the literature.

• The estimation of the floating point operations used to train a model is explained.

6.2 Model Variations
1. Introduction to Model Variations

• We want to evaluate the importance of different components of the Transformer model.

• We varied our base model in different ways and measured the change in performance

on English-to-German translation on the development set.

• We used beam search for evaluation.

2. Variation in Attention Heads and Dimensions

• Table 3 shows the variations on the Transformer architecture.

• In rows (A), we vary the number of attention heads and the attention key and value

dimensions, while keeping the amount of computation constant.

• Single-head attention is 0.9 BLEU worse than the best setting, and having too many

heads also decreases quality.

3. Performance on English-to-German Translation

• The metrics for performance on English-to-German translation are listed in Table 3.

• Perplexities are per-wordpiece, according to our byte-pair encoding, and should not be

compared to per-word perplexities.

4. Further Variations in Model Parameters

• Rows (B) show the variation in attention key size, where reducing the key size hurts

model quality.

• Rows (C) and (D) demonstrate that bigger models perform better, and dropout is useful

for avoiding overfitting.

• In row (E), we replace sinusoidal positional encoding with learned positional

embeddings and observe similar results to the base model.

7 Conclusion
1. Introduction to the Transformer:

• The Transformer is presented as the first sequence transduction model based entirely

on attention.

• It replaces the recurrent layers commonly used in encoder-decoder architectures with

multi-headed self-attention.

2. Advantages of the Transformer for translation tasks:

• The Transformer can be trained much faster than architectures based on recurrent or

convolutional layers.

• It achieves a new state of the art in translation tasks such as English-to-German and

English-to-French.

3. Future plans for attention-based models:

• The authors are excited about the future of attention-based models and plan to apply

them to other tasks.

• They intend to extend the Transformer to handle input and output modalities other

than text, such as images, audio, and video.

• Investigating local, restricted attention mechanisms to efficiently handle large inputs

and outputs is another goal.

• Making generation less sequential is also a research goal.

4. Availability of the code and acknowledgements:

• The code used to train and evaluate the models is available at the provided GitHub link.

• The authors express their gratitude to Nal Kalchbrenner and Stephan Gouws for their

comments, corrections, and inspiration.

