
Attention Is All You Need 

1 Introduction  
Recurrent neural networks (RNNs) and long short-term memory (LSTM) are used in 

sequence modeling, but have limitations in terms of parallelization. Attention mechanisms 

have been introduced to capture dependencies without distance constraints. The 

Transformer model eliminates recurrence and relies on attention mechanisms for global 

dependencies. It offers significant parallelization capabilities and achieves state-of-the-art 

translation quality with shorter training time. 

2 Background  
The goal of reducing sequential computation is the foundation for models like Extended 

Neural GPU, ByteNet, and ConvS2S. These models use convolutional neural networks to 

compute hidden representations in parallel. The Transformer reduces the number of 

operations required to relate signals from distant positions but faces a decrease in effective 

resolution, which is countered by Multi-Head Attention. Self-attention is an attention 

mechanism that relates positions in a sequence, successfully used in tasks like reading 

comprehension and summarization. The Transformer is the first model to rely entirely on 

self-attention without using RNNs or convolution, outperforming end-to-end memory 

networks. The advantages of self-attention over other models will be discussed further. 

3 Model Architecture  
Competitive neural sequence transduction models have an encoder-decoder structure, 

where the encoder maps input symbols to continuous representations and the decoder 

generates output symbols based on these representations. The model is auto-regressive, 

using previously generated symbols as input. The Transformer architecture follows this 

structure and utilizes stacked self-attention and fully connected layers for both the encoder 

and decoder. See Figure 1 for a visual representation of the encoder and decoder 

components. 

3.1 Encoder and Decoder Stacks  
The encoder stack consists of 6 layers with multi-head self-attention and fully connected 

networks. The decoder stack also has 6 layers with an additional sub-layer for multi-head 

attention over the encoder output. Both encoder and decoder use residual connections and 

layer normalization. In the decoder, self-attention is modified to prevent attending to 

subsequent positions. Output embeddings are masked and offset to ensure predictions 

depend on known outputs. 



3.2 Attention  
Attention is introduced as a concept in the text. An attention function is defined as a 

mapping between a query and a set of key-value pairs, with all vectors. The output is 

computed as a weighted sum of the values, where the weight is determined by a 

compatibility function of the query with the corresponding key. 

3.2.1 Scaled Dot-Product Attention  
In the field of attention mechanisms, the Scaled Dot-Product Attention is introduced, where 

inputs are queries, keys, and values of given dimensions. The attention computation 

involves the dot products of queries and keys, followed by scaling and softmax to obtain 

weights. This computation can be done simultaneously on a matrix of queries, keys, and 

values. Additive attention is an alternative method, but dot-product attention with scaling is 

generally more effective, especially for larger dimensions. Scaling is necessary to prevent 

issues with extremely small gradients caused by large dot products. 

3.2.2 Multi-Head Attention  
In multi-head attention, instead of using a single attention function with dmodel-

dimensional keys, values, and queries, it is more beneficial to linearly project them h times 

with different learned linear projections. The projected versions are then used to perform 

the attention function in parallel, allowing the model to attend to different information 

subspaces at different positions. The dot product of the projected keys and queries has a 

mean of 0 and a variance of dk. The MultiHead function is represented as a concatenation of 

individual attention heads, each computed using different parameter matrices. In this case, 

there are 8 parallel attention layers with dk = dv = dmodel/h = 64. Despite the reduction in 

dimension for each head, the computational cost is similar to single-head attention with full 

dimensionality. 

3.2.3 Applications of Attention in our Model  
The text discusses the applications of attention in the model, specifically the encoder-

decoder attention layers, encoder self-attention layers, decoder self-attention layers, and 

preventing leftward information flow in the decoder. These attention mechanisms allow for 

positions in the model to attend to specific positions in the input or previous layers to 

improve sequence-to-sequence models. 

3.3 Position-wise Feed-Forward Networks  
In transformer models, each layer contains a position-wise feed-forward network in 

addition to attention sub-layers. The feed-forward network applies the same operations to 

each position separately and identically. The feed-forward network consists of two linear 

transformations with a ReLU activation function in between. The output of the first linear 



transformation is passed through the ReLU activation function, and then the second linear 

transformation is applied to it. 

The parameters of the feed-forward network vary from layer to layer, even though the 

operations performed are the same for all positions. One way to interpret the feed-forward 

network is as two convolutions with a kernel size of 1. The input and output of the feed-

forward network have a dimensionality of 512, while the inner-layer of the network has a 

dimensionality of 2048. 

3.4 Embeddings and Softmax  
In sequence transduction models, learned embeddings are used to convert input and output 

tokens to vectors. A shared weight matrix is used in the embedding layers and pre-softmax 

linear transformation. This approach is similar to a study mentioned as "(<>)24". 

3.5 Positional Encoding  
In order to encode the order of a sequence in a model without recurrence or convolution, 

positional encodings are added to the input embeddings. A table provides information on 

the complexity and maximum path lengths for different layer types. Positional encodings 

have the same dimension as the embeddings and can be either learned or fixed. The chosen 

approach involves using sine and cosine functions to create positional encodings. This 

allows the model to easily learn to attend by relative positions. Learned positional 

embeddings were also tested, but the sinusoidal version was chosen for its potential to 

handle longer sequence lengths. 

4 Why Self-Attention  
The introduction discusses the comparison between self-attention layers, recurrent layers, 

and convolutional layers used for mapping sequences. Three desiderata motivate the use of 

self-attention: computational complexity, parallelizability, and path length between long-

range dependencies. Self-attention layers have faster computational complexity than 

recurrent layers for shorter sequences. Self-attention can be restricted to a neighborhood 

for very long sequences. Convolutional layers require a stack of layers to connect all input 

and output positions. Self-attention can lead to more interpretable models by providing 

insights into sentence structure. 

5 Training  
The text briefly mentions that there is a training regime for the models but does not provide 

any specific details about it. 



5.1 Training Data and Batching  
The training data used for English-German translation consists of about 4.5 million sentence 

pairs encoded using byte-pair encoding. The vocabulary size is approximately 37,000 

tokens. For English-French translation, a larger dataset of 36 million sentences was used, 

with a vocabulary size of 32,000 tokens. Sentence pairs were batched together based on 

sequence length, with each training batch containing around 25,000 source tokens and 

25,000 target tokens. 

5.2 Hardware and Schedule  
The models were trained on a machine with 8 NVIDIA P100 GPUs. The training step for the 

base models took 0.4 seconds each and lasted for 100,000 steps or 12 hours. The big models 

had a longer step time of 1.0 seconds and were trained for 300,000 steps, equivalent to 3.5 

days. 

5.3 Optimizer  
We used the Adam optimizer with specific parameters for our training. The learning rate 

was determined by a formula that increases linearly for a certain number of steps and then 

decreases proportionally to the inverse square root of the step number. We used a warm-up 

step value of 4000. 

5.4 Regularization  
Regularization techniques, including Residual Dropout and Dropout, are applied during 

training to improve performance. The Transformer model achieves better BLEU scores 

compared to previous models while requiring less training cost. Label smoothing is used 

during training to improve accuracy and BLEU score, despite potentially increasing 

perplexity. 

6 Results  
The big transformer model achieves state-of-the-art results for machine translation tasks in 

English-to-German and English-to-French. It outperforms previous models and ensembles 

at a lower training cost. The process of obtaining the final model and details on 

hyperparameters and inference are described. Table 2 summarizes the results and 

compares them to other model architectures. The estimation of floating point operations for 

training is also explained. 

6.2 Model Variations  
The study evaluates the importance of different components of the Transformer model for 

English-to-German translation. They varied the model in different ways and measured the 



change in performance using beam search. Variation in attention heads and dimensions 

showed that having too few or too many heads decreases quality. Performance metrics are 

listed in Table 3, and further variations in model parameters showed that reducing key size 

hurts model quality, bigger models perform better, and dropout helps avoid overfitting. The 

study also replaced positional encoding with learned embeddings and observed similar 

results to the base model. 

7 Conclusion  
The Transformer is a sequence transduction model based on attention, replacing recurrent 

layers with multi-headed self-attention. It can be trained faster and achieves state-of-the-art 

performance in translation tasks. Future plans include applying attention-based models to 

other tasks, handling input and output modalities beyond text, investigating efficient 

attention mechanisms, and improving generation. The code is available on GitHub, and the 

authors acknowledge Nal Kalchbrenner and Stephan Gouws for their contributions. 


