Airbnb Data Mart

Development

Table of Contents

1. Overview of the Application Structure

2. Implementation Procedure

3. Entities and Procedures in Detail

© 0 NV AE LN R

=
= O

Users — Create and Delete

Lodging, Furnishing, Room, Rule, Policy
Location, City, State, Country and Continent
Create, Delete and Manage a Lodging
Basic, Detailed and Geographic Search
Sight and Public Transport

Proximity Search

Booking and Transaction

Payment Option and Currency

Book a Stay and Write a Review

Display and Manage Open Transactions

Overview of the Database Structure

Database components

The logical structure of the data mart consists of six components which represent all functionality of the application. The components are split up according to their
roles in the overall user experience of a certain user type. Thereby three types of component groups can be classified, namely components concerning host users,
guest users or both user types.

Components for Guest and Host Users

The first component of the data mart represents basic administration functionality for user management, the creation and deletion of users. The user management is
thereby embedded in the “Users” table, and it’s related SQL statements. The second component is the payment system, which core features are realized with the
“Transactions” table and the additional multi-currency and multi-payment gateway support spread across the “PaymentOption” and “Currency” table.

Components for Guest Users

The third component is centered around the search functionality, which can be used by a guest to find a suitable lodging. Search queries can be performed by issuing
detailed criteria concerning a lodging like guest capacity, but also by making a geographical grid search. The former is handled with the “Lodging” and the latter with
the help of the “Location” table. The search functionality also encompasses the search for nearby locations, which is achieved by leveraging the “Location” table. In the
scope of this application the nearby locations are restricted to a small selection of sights and public transport locations which are stored in the “PublicTransport” and
“Sight” tables. The fourth component for reservation management is represented by the “Booking” table. The logic related to the table stores the reservations and
prevents possible conflicts with other reservations for the same lodging. The fifth and last component for the guest user type is the review system, with functionality
for storing reviews in the “Review” table and calculation of ratings for the individual lodgings.

Components for Host Users

The sixth component of the application is concerned with the core functionality of a host user. This includes the creation and management of lodgings which is spread
over several tables. Thereby the “Lodging” table is the main hub for information about a lodging connecting the “Furnishing”, “Room”, “Rule” and “Policy tables via join
tables. An additional relation to the “Location” table connects the lodgings to the geographic search functionality.

Implementation Procedure

Set-Up of the Database Structure

The implementation started with the creation of all tables which are specified in the initial ER-Model. After the setup of the core database structure the next part was
the collection of appropriate data for the data mart.

Collection of the Data

The collection started with filling the “Currency” and the “PaymentOption” tables. After that the generation of data for the “Users” table with a small python script
was the next step. Following was the extraction of cities, states, countries and continents from the MONDIAL database which features an extensive collection of the
aforementioned entities.

With data for this tables set-up, the next step was the scraping of data for lodgings, locations, public transports and sights from Airbnb and Google Maps. The last part
of the data collection was generating data for the bookings, transactions, furniture, rooms, policies and rules for the lodgings. After all the data was collected and
generated, it was imported into the database.

Creation of the Application Logic

The final step of the implementation was the creation of the SQL statements for controlling the application. The development of the procedures started according to
their respective place in the application control-flow. First the procedures for user management were implemented. Following was the creation of the code for lodging
creation and management. In the next step the search functionality was set-up and finally the procedures for the booking, review and payment system were
implemented.

Users

The Users entity is the core of the User Management functionality and features all

important information about a user.

The user information consists thereby of:
* Aunique username
* First Name
e Last Name
* Email
* Phone Number

* An optional “About” text

* The chosen display currency of the user
* The recursive relation’s ID for distinguishing a host from a guest

The control logic for the user management is thereby embedded in the two
procedures related to the “Users” entity. The CreateUser and DeleteAccount

procedures.

SQL-Statement

CREATE TAELE users

ID INT NOT NULL AUTO_INCREMENT,
Username VARCHAR(128) MNOT MWULL UNIQUE,
FirstName VARCHAR(128) MNOT MNULL,
LasthName WARCHAR(128) NOT MULL,

Email VARCHAR(128) NOT MULL,

Phone VARCHAR(2&) NOT MNULL,

About TEXT,

CurrencyID INT MOT MULL,

HostID INT,

PRIMARY KEY(ID),

FOREIGN KEY(CurrencyID) REFERENCES currency(ID),
FOREIGM KEY(HostID) REFEREMCES users(ID) ON DELETE

CASCADE

CreateUser Procedure

Like the name implies, the CreateUser procedure is used to create a new user account. The procedure takes the users information according to the ER-Model as input
parameters and first of all checks if all parameters are issued. After the check, the new user is inserted into the database. It is important to note that the procedure

stores each user first as a guest user, which is the standard of the application.

Test Case

To create a user the CreateUser procedure is called with a set of test parameters:

SET @p8="jeadup33’;
SET @pl="Jean’;
SET @p2="Dupont’;
SET @p3="jean.dupont@gmail.com’;
SET {@pd="+4367764099482";
SET @p5="Euro’;
SET @p6="Hello I am a Test.';
CALL “User_CreateUser” (@pe, @pl, @p2, @p3, Epd, @p5, @pb6, @p7);
SELECT @p7 AS “message’ ;
The command results in the following new entry in the database:

" Zeige Datensatze 0 - 0 {1 insgesamt, Die Abfrage dauerte 0,0010 Sekunden.)

SELECT * FROM “users™ WHERE username = "jeadup33"

ID |Username |FirstName |LastName |Email Phone About CurrencylD

HostlD

21 |jeadup33 Jean Dupont jean.dupont@gmail.com | +436776499452 | Hello | am a Test. 5

YN
INOILL

Flow Diagram

[Input Parameters]

Error Message J

Currency
correct?

Error Meszage 1

[Create Mew User]

DeleteAccount Procedure

The DeleteAccount procedure implements the functionality for deleting users. The procedure employs various checks to ensure the integrity of the database after a
user is deleted. First it is checked if the issued username parameter can be found in the data mart. After that, the “host” status of the user is queried. If the user is a
guest, the procedure checks for unreceived payments and if the check is passed, the user is deleted. For a host user first a check for unclaimed payments is made. If all
payments are settled, the procedure first queries all the locations of the host’s lodgings and stores them in a temporary table. Then the host user is deleted and
through the foreign key relations all lodgings and related information is deleted from the database. In the last step, the stored locations are also deleted.

Test Case — User can be deleted Test Case — User cannot be deleted, because of open transactions
For the test case, the newly created user “jeadup33” is deleted. For this test case a guest with open payments is chosen:

. . SELECT JUse FROM
The procedure is called with the username as parameter: Hsers . Dearnane users

INMER JOINM booking ON booking.UsersID = users.ID
SET @pB="-"eadup33’ INMER JOIM transactions ON transactions.BoockingID = booking.ID
ZpB= :
&P Jeadup 4 WHERE transactions.Received = @ LIMIT 1;

The result is the username “patand16”, which is now used as parameter for the
SELECT {@pl AS "message ; DeleteAccount procedure:

CALL "User DeleteAccount” (@p€, @pl);

)]] SET {@p@="patandl6'; CALL "User DeleteAccount” (@p@, @pl); SELECT @pl AS "message’;
Checking for the user entry confirms the deletion.

and results in an error message:

" MySQL lieferte ein leeres Resultat zurtick (d.h. null Datensatze). Ergebnisse der ausgefiihrten Prozedur "User_DeleteAccount

SELECT * FROM users WHERE username = "“jeadup33"

message

Deactivation Failed - Open Transaction

Lodging

The lodging entity is the backbone of the data mart structure and connects all other
components.

The lodging entity consists of:
* Adescription of the lodging
* The category of the lodging, like Hotel or Apartment
* An about text with various information
* The capacity which is the maximum number of allowed guests
* The rating which is the average from all review ratings
* The price per night
* The currency of the host user
* The exact geographical location
* And the host of the lodging

The functionality implemented with the lodging table is also dependent on the
several following tables which are used for the storage of the lodging's other
attributes and the overall seven related procedures.

SQL-Statement

CREATE TABLE lodging

ID INT WOT NULL AUTO_TMCREMENT,
Description WVARCHAR(128) MOT MNULL UNIQUE,
Category WVARCHAR(G4) NOT MNULL,
About TEXT MNOT MULL,

Capacity INT NOT NULL,

Rating DECIMAL(Z2, 1),

Price DECIMAL(7, 2) MNOT MNULL,
CurrencyID INT NOT NULL,
LocationID INT MOT NULL,
UsersID INT NOT MULL,

PRIMARY KEY(ID),

FOREIGN KEY(CurrencyID) REFEREMNCES currency(ID),
FOREIGN KEY(LocationID) REFERENCES location(ID),
FOREIGN KEY(UsersID) REFEREMCES users(ID) OM DELETE

CASCADE

Furnishing, Room, Rule and Policy

The following four entities are used to store information which can be used to describe various lodgings. All four tables are based on the same layout, which only
stores the description of the corresponding object. The tables are thereby connected to the lodging tables with junction tables. This architecture is chosen, because it
reduces the data volume to be stored and also improves the query speed.

Furnishing Room
The furnishing entity is used to specify furniture and other assets to a lodging, For the information regarding the physical structure of a lodging the room table is
for example WLAN, Microwave or a Shower. employed, in which various possible rooms are predefined.
Rule Policy
The rule entity holds the possible house rules which a host can assign to a The last of the four attribute tables stores policies for lodgings. For example,
lodging. For example, that no smoking or pets are allowed information about booking cancellations.
CREATE TABLE furnishing CREATE TABLE room CREATE TABLE rule CREATE TABLE policy
ID INT NOT NULL AUTO_INCREMENT, ID INT NOT NULL AUTO_INCREMENT, o I”T HC.)T NULL AUTO_INCREMENT, ID INT NOT NULL AUTO_TINCREMENT,
Description VARCHAR(64) NOT MNULL, Description VARCHAR(64) NOT NULL, Description VARCHAR(G4) NOT NULL, Description TEXT NOT NULL,
PRIMARY KEY(ID PRIMARY KEY(ID PRIMARY KEY(ID PRIMARY KEY(ID

Location

Before the functionality of the lodging management can be examined, first the
location entity must be described, as the lodging entity depends on it. The location
table is the central storage for geographical information, which connects the lodgings
to the geographical search functionality. For adding the longitude and latitude data,
Google Maps can be leveraged. To get the coordinates of a location, a right click in
Google Maps on the exact location displays the coordinates in the first row of a newly
opened small window.

The location entity consists of:

The longitude of the location in decimal degrees

The latitude of the location in decimal degrees

The address of the location in the form of a street name and house number
The capacity which is the maximum number of allowed guests

The city in which the location lies

The location’s state

The location’s country

And the continent

Like for the lodgings, the location entity is depended on several other tables which
store the respective cities, states, countries and continents.

SQL-Statement

CREATE TABLE location
ID INT WOT MULL AUTO_IMCREMENT,
Longitude DECIMAL(17,14) NOT MNULL,
Latitude DECIMAL(17,14) NOT NULL,
Streest VARCHAR(1253) MOT MULL,
CityID INT MOT MULL,
StateID INT NOT NULL,
CountryID INT MOT MULL,
ContinentID

PRIMARY
FOREIGN
FOREIGHN
FOREIGN
FOREIGN

KEY
KEY
KEY
KEY
KEY

INT MOT MULL,

D),

CityID) REFERENCES city(ID),
StateID) REFERENCES state(ID),
CountryID) REFEREMCES country(ID),

ContinentID) REFERENCES continent(ID

10

City, State, Country, Continent

This four entities features an extensive collection of cities, states, countries and continents and are used for efficient storage of locations. Like for the lodging's
attributes, this architecture was chosen to reduce data volume. All four tables have the same structure which is shown on the right.

City

The city table is used for the storage of cities.

State

The state entity holds the states and provinces.

Country

The same as the city and state table, but only for countries.
Continent

The last of the four tables stores the continents.

CREATE TABLE city
ID INT WNOT NULL AUTO_TINCREMENT,
MName VARCHAR(128) NOT MULL UMIQUE,
PRIMARY KEY(ID
3
CREATE TABLE state
ID INT NOT NULL AUTO_INCREMENT,
Name WVARCHAR(128) NOT MULL UNIQUE,
PRIMARY KEY(ID
3
CREATE TABLE country
ID INT WOT MULL AUTO_TIMCREMENT,
Name VARCHAR(64) MOT NULL UNIQUE,
PRIMARY KEY(ID
3
CREATE TABLE continent
ID INT NOT MULL AUTO_TNCREMENT,
Name WARCHAR(16) NOT MNULL UMIQUE,
PRIMARY KEY(ID

11

CreatelLodging Procedure

Procedure Logic

The Createlodging procedure is the starting point for
the creation of new lodgings. The command takes an
extensive set of inputs which are used to supply the
core information for the lodging and location entities.

The first step is an initial check if all parameters are
issued and if all parameters exist in the data mart. If all
checks are passed, the procedure starts a transaction.

First of all, a new location is created with the given
parameters. In the second step, the ID of the newly
created location is temporarily stored.

Next the new lodging is created and in the last step a
check is set-up which updates a user's status from
guest to host if the created lodging is the first lodging
of the user.

Test Case

To create a new lodging, the CreatelLodging procedure is called with a set of test parameters and the newly
created user “jeadup33”:

SET @p8="jeadup33'; SET @pl='Apartment in Vienna'; SET @p2="Apartment’; SET @p3="Nice apartment in Vienna';
SET @p4='3"; SET {@p5='28"; SET [@p6-'48.21214189168658"; SET (p7-'16.215087003398847"; SET @ps-'Thaliastrasse 121';
SET @po="Vienna'; SET @pl@='Vienna'; SET [gpll="Austria’; SET @pl2="Europe';

CALL “Host_CreateAlodging” (@pe, @pl, @p2, @p3, @p4, @p5, @pb, @p7, @p8, @p%, @ple, @pll, @pl2, @pl3);

SELECT (gpl3 AS “message’;
The command results in the following new entries in the database:

W Zeige Datensatze 0 - 0 (1 insgesamt, Die Abfrage dauerte 0,0014 Sekunden.)

SELECT * FROM lodging WHERE Description = "Apartment in Vienna"

ID |Description Category |About Capacity |Rating |Price |CurrencylD (LocationlD |UsersiD
21 | Apartment in Vienna | Apariment | Nice apartment in Vienna 3 NULL |28.00 b | 21
SELECT * FROM location WHERE ID = 31

ID Longitude Latitude | Street CitylD | StatelD |CountrylD |ContinentlD

81 |[48.21214109168658 |16.31500700339885 |Thaliastrasse 121 2823 1351 13 5

SELECT HostID FROM users WHERE username = "jeadup33"

HostID

21

12

DeletelLodging Procedure

Test Case

Procedure Logic

The DeleteLodging procedure is the second part of the
lodging administration logic and, like the name implies,
is responsible for removing lodgings from the database.
The procedure takes two parameters, namely the
username and the description of the lodging as input.

Then the procedure starts with an initial check if the
entered username is correct, consequently validates if
the lodging exists in the database and checks if the user
has the right to delete the lodging.

From this point on, there are two possibilities. If there
are no bookings for the lodging, there also cannot be
open transactions. Therefore, the lodging can be
deleted.

Otherwise, if at least one booking exists for the lodging,
the procedure checks if all corresponding transactions
are closed and deletes the lodging.

Finally, there is a check if the deleted lodging was the
last lodging of the host and if this is validated to true,
the host status of the user is revoked.

To test the procedure first the newly created lodging “Apartment in Vienna” is deleted.

SET {@p@="jeadup33'; SET (@pl='Apartment in Vienna'; CALL "Host_Deletelodging” (@p@, @pl, @p2); SELECT {@p2 AS “message’;

A quick search after the lodging and location confirms the deletion.

" MySQL lieferte ein leeres Resultat zuriick (d.h. null Datensatze). (Die Abfrage dauerte 0,0013 Sekunden.)

SELECT * FROM lodging WHERE Description = "Apartment in Vienna"

SELECT HostID FROM users WHERE users.Username = "jeadup33"

HostlD

NI T
INULLE

To test the control logic for open transactions, the “Private studio in Central London” is set as input
parameter. This lodging has unsettled transactions.

SET @p@="wiljon28'; SET @pl='Private studio in Central London'; CALL "Host_Deletelodging” (@p®, @pl, @p2); SELECT @p2 AS “message’;

Executing the procedure results in an error message.

message
Deletion Failed - Not Settled Transactions

13

ManageFurniture, ManagePolicies, ManageRooms and ManageRules Procedures

The following procedures are used to add and remove furniture, rooms, policies and rules to a lodging. All four procedures have basically the same inputs, which
consists of the host’s username, the name of the lodging, the action which can either be “Add” or “Remove” and the items which should be added or removed in a
comma separated list. Additionally, the room table takes a comma separated list which must be aligned with the room list and holds the amount of a respective room.
Here only the ManageRooms procedure is tested, the other procedures are demonstrated during the test of the search functionality.

Test Case - Adding rooms

For the test case one Bathroom, two Bedrooms and one Living room is
added to the “Apartment in Vienna”.

SET @p@="jeadup33’'; SET @pl="'Apartment in Vienna';

SET @p2='Bathroom,Bedroom,Living Room'; SET @p3='1,2,1";
SET @pd="Add";

CALL "Host_ManageRooms™ (@p®, @pl, @p2, @p3, @pd, @p5);
SELECT {@p5 AS "message’ ;

A search for all rooms confirms the results.

" Zeige Datensatze 0 - 2 (3 insgesamt, Die Abfrage dauerte 0,0028 Sekunden.)

lodging_room.lodgingID = lodging.ID INMER JOIN room ON lodging_room.RoomID = room.ID WHERE
lodging.Description = "Apartment in Vienna"

Description Description | Number

Apartment in Vienna | Bedroom 2

Apartment in Vienna | Bathroom 1

Apartment in Vienna | Living Room 1

Test Case — Removing rooms

For this test case the living room is removed from the apartment.

SET @p8="jeadup33’; SET @pl="Apartment in Vienna';

SET @p2="Living Room'; SET @Ep3=""; SET (@pd="Remove’;
CALL "Host ManageRooms™ (@gp@, @pl, @p2, @p3, @Epd, @p5);
SELECT [@p5 AS “message’ ;

For removing it is not necessary to specify a number for the room. Executing the
same search query as for the “Add” test case gives following results.

" Zeige Datensatze 0 - 1 (2 insgesamt, Die Abfrage dauerte 0,0032 Sekunden.)

lodging_room.LodgingID = lodging.ID INNER JOIN rcom ON lodging_room.RoomID = room.ID WHERE

lodging.Description = "Apartment in Vienna”
Description Description | Number
Apartment in Vienna | Bedroom 2
Apartment in Vienna | Bathroom 1

14

SearchALodging and SearchGeographically Procedure

The first guest user related procedures are used to search for a lodging with the category, capacity and city parameters or with geographical entities like cities, states,
countries or continent. It is important that for the SearchGeographically procedure only one entity is chosen, for example only a country and that for the
SearchAlLodging procedure all parameters are issued. Additionally, the SearchALodging procedure displays all lodgings that are greater or equal then the given capacity.

Test Case — Searching for lodgings in Italy Test Case — Searching for an apartment in Vienna
The SearchGeographically procedure can be used with all geographical entities of the data For testing the SearchALodging procedure, a search for an apartment in
mart. The first search is for lodgings in Italy. Vienna with a capacity for at least two people is conducted.

SET @pe=""; SET @pl=""; SET @p2="Italy'; SET @p3="".
CALL "“Guest_SearchGeographically” (@pe, @pl, @p2, @p3);

With the results:

SET @p@="Apartment'; SET @pl="2"; SET @p2="Vienna';
CALL "“Guest SearchAlodging” (@gp@, @pl, @p2);

Lodging Street City State Country Continent . L. i
Piazza Navona Penthouse, nel cuore di Romal Via di Tor Sanguigna, 13 ~ Rome Lazio Italy Europe The search yields two results, an existing entry in the data mart and the
Casa Trastevere Lungotevere Farmesina, 34 Rome Lazio [Italy Europe neW|y created test apartment.
Additionally, a search for lodgings in Amerika is performed. Lodging _ o Gatagory Japactty Strest c.'ty
Lovely Apartment in Heart of Vienna near Metrol Apartment 3 Y bbsstrasse 25 Vienna
SET @p@=""; SET @pl=""; SET @p2=''; SET @p3='America’; CALL ~Guest SearchGeographically” (@p®, @pl. @p2. @p3); Apartment in Vienna Apartment 3 Thaliastrasse 121 Vienna
Resulting in:
Lodging Street City State Country Continent
Flatbush Hideaway - Quiet and close to subway! 118 E 28th St New York New York United States America
Queen Room 1047 E 21st 3t New York New York United States America
Bonito centrico LOFT C/Jacuzzi en terraza privada Nicolas San Juan 1628 Mexico City Mexiko City Mexico America
Nice historic porfirian apt with terrace Valladolid 34 Mexico City Mexiko City Mexico America
Loft com vista maravilhosa do Pao de Acucar Praia de Botafogo. 324 Rio de Janeiro Rio de Janeiro Brazil America
FLATS MIDAS RIC -H Av. Canal do Rio Cacambe, 13 Rio de Janeiro Rio de Janeiro Brazil America
Maple Leaf Sq. +Patio - 1BR + Sofabed - Jays. MTCC 56 York St Toronto Ontario Canada America
Cosy basement apariment with free parking! 788 St Clair Ave W Toronto Ontario Canada America

15

ShowLodgingDetails Procedure

When a lodging has been found with one of the two search functions, the desired lodging can be viewed in detail with the ShowLodgingDetails procedure. The
procedure first checks the input parameters, which are the lodgings description and the username of the guest. Then detailed information, which includes furniture,
rooms, rules, policies, the reviews which were left by guests, capacity, category, rating and the price converted into the guest currency, is displayed.

Test Case Preparation
Before testing the procedure, furniture, rules and a policy is added.

For the furniture a shower, microwave and WLAN is added to the test apartment.

SET {@p8="jeadup33'; SET @pl="Apartment in Wienna'; SET (@p2='Shower,Microwave,WLAN";
SET @p3="Add"; CALL “Host_ManageFurniture” (@Ep®, @pl, @p2, @p3, @p4); SELECT @p4 AS “message

= @&

Additionally, the apartment does not allow pets and kids.

SET @p8="jeadup33'; SET @pl='Apartment in Vienna'; SET @p2="Ho Kids,No Pets’';
SET @p3="Add"; CALL “Host_ManageRules (@pe, @pl, @p2, @p3, @p4); SELECT @p4 AS “message’;

And finally, a free cancelation for up to five days before the stay is chosen. It is
important to note that for adding a policy the policy ID must be given as
parameter, because of the text length.

SET @p8="jeadup33'; SET @pl="Apartment in Vienna'; SET @p2="2";
SET @p3="Add"'; CALL “Host_ManagePolicies (@gp@, @pl, @p2, @p3, @pd);
SELECT @p4 AS “message’ ;

Test Case — Detailed information for the test apartment

After setting up the test lodging detailed information can be displayed to the
user.

SET @p@='johwil24'; SET @pl="Apartment in Vienna'; CALL ~Guest_ShowlodgingDetails™ (@p@, @pl, @p2);
SELECT @p2 AS “message’;

The results are all information that were added previously without a review and
a rating, as there are currently are no reviews for the apartment:

category capacity Rating Price Currency

Apartment 3 NULL 3361 Dollar
Furniture Room Number Rule
Microwave Bedroom 2

MNo Pets
WLAN Bathroom 1
Shower Living Room 1 No Kids
Policy

Free cancellation up to five days before check-in. After that, if you cancel before check-in, you will receive a 50% refund minus the first night and service charge

16

Sight and PublicTransport

As an additional feature for the guest users, the data mart has built-in functionality for searching nearby locations with coordinates stored in the location table. The
locations are thereby limited to famous sights and public transport. In the scope of the data mart project, the sights and public transport entries were limited to two
records for each lodging in the test data. There is the possibility to feature a full roaster of all public transport systems, restaurant, sights stores and other locations by
leveraging the Google Data Studio software. Nevertheless, the decision was made to only implement a smaller proof-of-concept for the “Nearby Locations System”,
because implementing all the available data is outside of the scope of this project.

Sight PublicTransport

The sight entity contains names of famous sights. The sight table is thereby This table is filled with the names of the public transports. The data storage in this

linked to the location table and in turn to the search logic. entity is intentionally redundant, because when using the Google Data Studio to fill
the table, as this would be the case in a production scenario, the public transports all
would have different and unique names.

SQL-Statement SQL-Statement
CREATE TABLE sight CREATE TABLE publictransport
ID INT NOT NULL AUTO_INCREMENT, ID INT NOT NULL AUTO_INCREMENT,
Name VARCHAR(128) NOT NULL UNIQUE, Description VARCHAR(64) NOT NULL,
LocationID INT NOT MULL, LocationID INT NOT NULL,
PRIMARY KEY(ID), PRIMARY KEY(ID),
EOREIGM KEY(LocationID) REFERENCES location(ID FOREIGMN KEY(LocationID) REFERENCES location(ID
3 3

17

SearchNearbyLocations Procedure

The SearchNeabylLocations procedure implements the logic for searching for locations which are a certain number of kilometers away from a lodging’s location. The
procedure takes two input parameters, the lodging’s name and the maximum distance from the lodging in kilometers that a location is allowed to have. When the
procedure is called, first a check is made if the lodging’s name is correct. Following the coordinates of the lodging and the city of the lodging are queried and stored.
The next step is the calculation of the distance with the coordinates in the location table. For calculation, Pythagoras's theorem is used on an equirectangular projec-
tion. This formula can be used for smaller distances and is not as taxing on performance then a more accurate formula would be. Therefore, the search is limited to the
boundaries of the city in which the lodging is located.! My own testing revealed a distance error of +/- 100 meters on distance smaller then 30km with the tendency to

overshoot.
Test Case — Search within a 10 km radius

For the first test case a search within 10km of the test apartment is conducted.

SET @p®="'Apartment in Vienna'; SET @pl='1@'; CALL "Guest SearchNearbylLocations™ (@p8, @pl, @p2);

SELECT @p2 AS “message’ ;
With the following results:

Name Street Distance (km)
Hofburg Hofburg 26

Schoenbrunn Palace Schoenbrunner Schlossstrasse 47 2.8

Description Street
Bus Stop
Metro Station Vorgartenstrasse 9.7

Distance (km)
Harkortstrasse 9.4

Metro Station Taborstrasse 73

Metro Station Nestroyplatz 80

Ihttps://www.movable-type.co.uk/scripts/latlong.html , Equirectangular approximation®

Test Case — Search within a 3 km radius

To test the distance-based selection, the same search is performed, but only
within 3 km radius.
SET @p@="Apartment in Vienna'; SET @pl='3"; CALL ~Guest_Searchiearbylocations™ (@p@, @pl, @p2);
SELECT @p2 AS “message’ ;

The result confirms the correctness.

" Ihr SQL-Befehl wurde erfolgreich ausgefahrt
1 Datensaiz betroffen aufgrund des letzten Befehls innerhalb der Prozedur

SET @p@="Apartment in Vienna'; SET @pl='3"; CALL ~Guest_SearchNearbylocations™ (@p@, @pl, @p2); SELECT @p2 AS “message’;

Ergebnisse der ausgefiihrten Prozedur "Guest_SearchNearbyLocations”

Name Street
Schoenbrunn Palace Schoenbrunner Schlossstrasse 47 2.8

Distance (km)

18

Booking and Transactions

Booking Table Transactions Table

After a user has chosen a lodging that fits all the criteria, the next step Given that the booking table holds the administrative data, the
is to make a reservation. For handling the reservations, the booking transactions table holds all the financial related data. This includes the
table is used. The table holds information about the arrival and calculated total of the stay, the price per night, the currency of the
departure date, the guest user who booked the stay and the lodging, whether the guest paid his stay or not and also whether the
corresponding lodging. host claimed his money. Additionally, the exchange rates for the guest

and lodging currencies at the time of the booking, the chosen
payment option and the corresponding booking are stored.

SQL-Statement SQL-Statement

CREATE TAELE booking
ID INT WOT MNULL AUTO_INCREMENT,
Arrival DATE NOT MULL,
Departure DATE NOT NULL,
UsersID INT,
LodgingID INT MOT NULL,
PRIMARY KEY(ID),
FOREIGMN KEY(UsersID) REFERENCES users(ID) ON DELETE SET MULL,
FOREIGM KEY(LodgingID) REFERENCES lodging(ID) ON DELETE CASCADE

CREATE TABLE transaction

ID INT NOT MULL AUTO_INCREMENMT,

Amount DECIMAL(19, 2) NOT NULL,

Price DECIMAL(19, 2) NOT HULL,

Currency VARCHAR(G64) NOT NULL,

Receiwved BOOLEAM MOT MULL DEFAULT FALSE,

Settled BOOLEAN NOT NULL DEFAULT FALSE,
ExchangeEurolLodging DECIMAL(28, %) NOT MNULL,
ExchangeEuroGuest DECIMAL(26, 9) NOT MNULL,

PaymentOptionID IMT NOT MULL,

BookingID INT MOT NULL,

PRIMARY KEY(ID),

FOREIGN KEY(PaymentOptionID) REFERENCES paymentoption(ID),
FOREIGN KEY(BookingID) REFERENCES booking(ID) ON DELETE CASCADE

19

PaymentOption and Currency

The following two tables supplement the booking and transactions entities and form the financial management system of the data mart.

PaymentOption Table

As a supplementary table to the financial logic of the data mart, this
entity contains a selection of payment methods and financial service
providers.

SQL-Statement

CREATE TABLE paymentoption
ID INT WOT MNULL AUTO_IMCREMENT,
Mame VARCHAR(&4) NOT MULL UMIQUE,
PRIMARY KEY(ID

Currency Table

The currency table holds the supported currencies of the data mart.
Thereby the name of the currency and the current exchange rate to
Euro, which is the systems standard currency, are stored. In a
production environment the currency would be updated in certain
intervals, for example by external business logic.

SQL-Statement

CREATE TABLE currency
ID INT NOT NULL AUTO_INCREMENT,
Name WARCHAR(&54) MOT NULL UNIQUE,
ExchangeRate DECIMAL(28, 9) NOT NULL,
PRIMARY KEY(ID

20

BookAStay Procedure

The BookAStay procedure can be used to make a reservation in a lodging. The procedure takes the username of the guest, the lodging for which a reservation should
be made, the arrival and departure date and the payment option. After calling the procedure, first various checks are performed. This includes if the lodging, the user
and the payment option is issued correctly. In the next step there is a sanity check of the dates. If the arrival date is before the departure date and after the current

day, a check looks for possible conflicts with other reservations. If all checks are passed, the booking is inserted into the booking table and an additional entry in the
transactions table is made.

Test Case - Booking a stay in the test apartment

For the test case a reservation in the “Apartment in Vienna” is made.

SET @p@="johwil24'; SET @pl='Apartment in Vienna'; SET @p2='2021-07-23'; SET @p3="2021-07-26";
SET @p4="Wire Transfer'; CALL ~Guest_BookAStay™ (@p@®, @pl, @p2, @p3, @p4, @p5); SELECT @p5 AS “message”;

To test the correctness, a query on the booking and transactions table is used.

" Zeige Datensatze 0 - 0 (1 insgesamt, Die Abfrage dauerte 0,0016 Sekunden.)

SELECT * FROM booking WHERE Arrival = "2021-87-23" AND Departure = "2021-87-26"

ID | Arrival Departure |UsersiD |LedginglD
41 |2021-07-23]|2021-07-26 2 21

o Zeige Datensatze 0 - 0 (1 insgesamt, Die Abfrage dauerte 0,0013 Sekunden.)

SELECT * FROM transactions WHERE BookingID = 41

ID |Amount |Price [Currency |Received |Settled |ExchangeEurolLodging |ExchangeEuroGuest |PaymentOptionlD |BocokinglD

41 8820 |2800 |5 0 0 1.000000000 0.832884010 1 41

Test Case — Reservation conflict

To test the prevention of overlapping bookings, a second attempt for a
reservation from 25.07.2021 to 29.07.2021 is made.

SET @p@="johwil24'; SET @pl="Apartment in Vienna'; SET @p2='20821-87-25';
SET @p3="2021-87-29'; SET @p4='PayPal’;
CALL ~Guest BookAStay™ (@p@, @pl, @p2, @p3, @p4, @p5); SELECT @p5 AS “message’

Consequently, the booking attempt results in an error message.

message

Booking Failed - The lodging is already reserved for that date

21

Review and WriteAReview Procedure

After a stay, a user can write a review about the lodging. This functionality is implemented with the review entity and the corresponding procedure.

Review Table
The review table is used to store the content, rating, date
and the corresponding booking of the review.

SQL-Statement

CREATE TABLE review
ID INT NOT NULL AUTO_INCREMENT,
Content TEXT NOT MNULL,
Rating DECIMAL(2, 1) NOT NULL,
BookingID INT MOT MNULL,
PRIMARY KEY(ID),
FOREIGN KEY(BookingID) REFERENCES booking(ID) ON DELETE CASCADE

WriteAReview Procedure

The WriteAReview procedure takes the username, lodging, departure date, the actual review content
and the rating given by the user. After checking if all parameters are issued, if there is a booking for the
guest at a certain departure date and that this is not a second review for the same stay, the review is
inserted and the ratings for the lodging are recalculated.

Test Case — Writing a review for the test stay
To test the procedure a review is issued for the newly created test booking.

SET @p@="johwil24"; SET @pl="Apartment in Vienna'; SET @p2="2821-87-26"; SET @p3="A great place !'; SET @p4="4.8";
CALL ~Guest_WriteAReview (@p@, @pl, @p2, @p3, @p4, @p5); SELECT @p5 AS “message ;

To verify the creation of the new review, the ShowLodgingDetails procedure is used with the following
results:

category capacity Rating Price Currency Review Rating
Apartment 3 4.8 33.61 Dollar Agreatplace ! 4.8

22

ShowOpenTransactions Procedure

The last part of this presentation is concerned with the display and management of open transactions. To display open transactions, the ShowOpenTransactions
procedure can be used. The procedure takes a username as input and first of all checks if the username is correct. Following is a query that searches for all unreceived
(Unpaid) transactions. If the user is a host, there is an additional query to search for unsettled (Not paid out) transactions. It is important to note that for hosts only
unsettled transactions are displayed which have been already received and that the amount is changed to exclude the 5 percent platform fee.

Test Case — Guest with unreceived transactions

The first test case is used to display all unreceived transactions of the guest
“johwil24”.

SET @p@="Jjohwil24"'; CALL "“User ShowOpenTransactions™ (@p@, @pl);
SELECT @pl AS “message” ;

The result are two unreceived transactions, one of them being the test
reservation.

ID Status Total Fee Price per Night Currency Arrival
30 Unreceived 67.29 5% 21.36 Dollar
41 Unreceived 105.88 5% 33.61 Dollar

Departure Description
2020-05-06 2020-05-09 Best Location in Prague - Old Town
2021-07-23 2021-07-26 Apartment in Vienna

Test Case — Host with unsettled transactions

For the second test case, the open transactions of the user “wiljon28” are
queried.

= =

SET @p@="wiljon28"; CALL “User_ShowOpenTransactions™ (@p@, @pl); SELECT @pl AS “message;

With the results:

ID Status Total Price per Night Currency Arrival
9 Unsetiled 602.00 86.00 Pound
11 Unsettled 229.28 76.43 Pound

Departure Lodging
2020-12-13 2020-12-20 Studio Flat Farringdon, Clerkenwell, Holborn 501A
2020-05-06 2020-05-09 Private studio in Central London

23

CloseOpenTransactions and SettleOpenTransactions Procedure

The last two procedures are used for changing the received and settled status of a transaction. The procedures can be called manually, although in a production
environment the execution would probably be automated. For example, when choosing PayPal as payment option a dedicated API request could automatically set the

flags to received. For the host users, the payment could be triggered automatically by other business logic, for example a financial software at certain intervals. This
would also ensure that the transaction status in the data mart is in synch with the actual money in the bank account.

Test Case — Close the transactions of a guest user

For the first test case the first transactions of the user “johwil24” is set to
received. For this, the username, the ID and the amount of the transaction must

be given as parameters. The procedure checks all the parameters on correctness
and then sets the received flag to 1.

SET @p8="Jjohwil24"'; SET @pl='67.29"; SET @p2="30";
CALL "Guest_CloseOpenTransaction” (@p@, @pl, @p2, @p3);
SELECT @p3 AS “message” ;

Calling the ShowOpenTransactions procedure again, confirms the action.

w Ihr SQL-Befehl wurde erfolgreich ausgefuhrt
1 Datensatz betroffen aufgrund des letzten Befehls innerhalb der Prozedur.

SET @p@="johwil24'; CALL “User_ShowOpenTransactions™ (@p@, @pl); SELECT @pl AS “message’;

Ergebnisse der ausgefiihrten Prozedur "User_ShowOpenTransactions”

ID Status Total Fee Price per Night Currency Arrival
41 Unreceived 105.88 5% 33.61 Dollar

Departure Description
2021-07-23 2021-07-26 Apartment in Vienna

Test Case — Settle open transactions of a host

For the second test case, the open transactions of the user “wiljon28” are

settled. The SettleOpenTransactions procedure only needs the username as
input.

SET @p@="wiljon28'; CALL "Host SettleOpenTransactions’ (@p@, @pl);
SELECT @pl AS “message’ ;

Also, here the ShowOpenTransactions procedure is called again.

" Ihr SQL-Befehl wurde erfolgreich ausgefihrt
1 Datensalz betroffen aufgrund des letzten Befehls innerhalb der Prozedur.

SET @pB="wiljon28'; CALL "User_ShowOpenTransactions™ (@p@, @pl); SELECT @pl AS "message’;

Ergebnisse der ausgefiihrten Prozedur "User_ShowOpenTransactions’

message
Result

24

	Folie 1: Airbnb Data Mart
	Folie 2: Table of Contents
	Folie 3: Overview of the Database Structure
	Folie 4: Implementation Procedure
	Folie 5: Users
	Folie 6: CreateUser Procedure
	Folie 7: DeleteAccount Procedure
	Folie 8: Lodging
	Folie 9: Furnishing, Room, Rule and Policy
	Folie 10: Location
	Folie 11: City, State, Country, Continent
	Folie 12: CreateLodging Procedure
	Folie 13: DeleteLodging Procedure
	Folie 14: ManageFurniture, ManagePolicies, ManageRooms and ManageRules Procedures
	Folie 15: SearchALodging and SearchGeographically Procedure
	Folie 16: ShowLodgingDetails Procedure
	Folie 17: Sight and PublicTransport
	Folie 18: SearchNearbyLocations Procedure
	Folie 19: Booking and Transactions
	Folie 20: PaymentOption and Currency
	Folie 21: BookAStay Procedure
	Folie 22: Review and WriteAReview Procedure
	Folie 23: ShowOpenTransactions Procedure
	Folie 24: CloseOpenTransactions and SettleOpenTransactions Procedure

