
Emotion Detection
in Images

Overview of the Implementation

1. Researching Computer Vision and Transfer Learning
The start of the project included research about how computer vision works and how well-performing models can be built by using the transfer
learning approach. The focus for this step lied on the identification of suitable frameworks and candidate base models for transfer learning.

2. Preparing a Dataset for Training
Following the initial research, the second step of the project included finding and preparing a suitable dataset. The goal of this step was to
ensure that the resulting dataset is of high enough quality to allow for training a reasonably performant model.

3. Setting up the Training Environment and Model
With the dataset at hand, the training environment was set up and the model architecture was developed. For this step it was important to
look out for pitfalls that result from working with larger image datasets, which includes issues like learning time and hardware constraints.

4. Model Evaluation and Image Prediction
To finalize the project a testing environment was created that allows for validating the model's performance with an additional dataset and to
test the prediction capabilities firsthand with a small selection of images.

2

CNNs and Transfer Learning
Computer vision with convolutional neural networks (CNNs) works by first taking a
given image as input and breaking it down into small pieces. These pieces, called
‘feature maps’, are then passed through a series of convolutional layers. The
convolutional layers are responsible for extracting and recognizing specific features in
the images, such as edges, lines, and shapes. After each layer is applied to the image,
a pooling operation is performed to reduce the size of the feature maps while also
maintaining important features identified by the convolutional layer.

Once all these operations have been completed on an image, a fully connected neural
network is then used to classify it into one or more categories. This type of network
takes in all feature maps from each convolutional layer and uses them to determine an
output class for the given image. How such an architecture looks like can be seen on
the illustration on the right side which represents the schema of the VGG19 network
that is used as a base model in this project.

Transfer learning builds on utilizing a pretrained model, usually from a larger and more
complex dataset. This pretrained model is then adapted to the new data set, allowing
for faster training times and improved accuracy. In computer vision tasks using CNNs,
transfer learning works by taking weights from a pre-trained network on ImageNet or
other large datasets and applying them to the new task with slight modifications. The
lower layers of the network are used as feature extractors while the higher layers are
adjusted according to the new task's needs.

Figure 1. VGG19 model structure. Retrieved from Zheng, Yufeng & Yang, Clifford &
Merkulov, Aleksey. (2018). Breast cancer screening using convolutional neural
network and follow-up digital mammography.

3

https://keras.io/api/applications/vgg/

Frameworks and Base Model
For this project I decided to use TensorFlow and Keras as base for training my
model. They are two of the most widely used frameworks for creating, training
and deploying convolutional neural networks. TensorFlow is a powerful open-
source software library that contains a variety of APIs that can be used to
construct, train, evaluate and deploy deep learning models. On the other hand,
Keras is an open-source library designed to make working with complex neural
network architectures simpler. It works on top of TensorFlow and allows to
quickly prototype deep learning models without having to dive into the
underlying code too much. In addition, both frameworks have built-in support
for GPU and TPU acceleration so they can take advantage of hardware
accelerators such as NVidia GPUs or Google TPUs when available.

As a base model I decided to use the VGG19 model. The VGG19 model is a deep
convolutional neural network developed by the Visual Geometry Group at
Oxford University in 2014. It consists of 19 layers, including 13 convolutional
layers and 5 fully connected layers. The model was trained using the ImageNet
dataset which contains 1.2 million images from 1000 different categories for
training. The VGG19 like many other models are included in the Keras library and
readily available as Python classes to build upon.

Keras

TensorFlow

GPU CPU TPU

4

https://www.tensorflow.org/
https://keras.io/

Dataset Criteria
When selecting datasets for computer vision tasks with convolutional neural networks, there are certain criteria that should be met.

1. Correct labels
This means that the class labels must accurately represent what is being seen in each image, especially for a subtle task like recognizing emotions in
human faces. Labeling must be accurate and consistent in order for the model to learn meaningful patterns and produce reliable results. To ensure that
data is correctly labeled, it should be done manually by experienced annotators who are familiar with emotion recognition tasks. For example, an image
labeled “happy” should show a face displaying clear signs of joy or excitement rather than simply a neutral expression or one exhibiting mild satisfaction.

2. Balanced Categories
If data is highly unbalanced, the model may learn to recognize only the majority class and completely ignore minority classes. This can lead to a poor
performance of the model. To address this issue, it is important to collect more data from minority classes or perform data augmentation techniques
such as image flipping or cropping on existing images.

3. Right Image Resolution
The size of the images used for training can have a significant impact on the performance of a Convolutional Neural Network (CNN). Generally, larger
sized images allow for higher resolution features to be detected and learned by the model. This increased detail can lead to improved accuracy in object
detection and classification tasks. On the other hand, larger image sizes also require more computational resources, which can make training longer.

4. Training, Validation and Test Data
It is essential to have a training, test and validation set. By having all three sets of data, the model can be thoroughly evaluated and tested to ensure a
good performance. The training set is used for the model to learn how to classify images correctly. The validation set is used during development of the
model to tune hyperparameters such as the learning rate or the find the right architecture. The test set is then used for evaluating the performance on
unseen data after training has been completed.

5

The Three-Emotions-Dataset

The dataset that was ultimately used for training was tailored to get
the best possible performance while staying inside a reasonable
frame regarding computation resources and training time. The basis
for the custom dataset was the Fer2013 dataset.

The Fer2013 dataset is a publicly available collection of facial images
created in 2013, with each image annotated with one of seven
emotion labels. Despite its popularity, it is limited by low image
quality and unreliable labels, which is not that ideal for facial
recognition research.

To alleviate some of these issues, I decided to pick the three most
distinct emotions: joy, anger and sadness and use data augmentation
to balance the dataset to 5000 images per category.

The final three-emotions-dataset contains 15000 training images
sorted by three categories and 3979 test images that were copied
from the original Fer2013 dataset. Although in reality there were
only 12000 training images, as 20 percent were split and used as
validation data.

6

Fer2013

Angry Disgust Fear Happy Neutral Sad Surprise

Angry Happy Sad

Augmentation

Three Emotions Dataset

https://www.kaggle.com/datasets/msambare/fer2013

Model Training Prerequisites
For successful model training there are certain things that need to be taken into account.

1. Image preprocessing

Image preprocessing prior to training a CNN model is essential for accurate results. This involves converting images in array format, normalizing
the image data, applying color transforms and performing computations like resizing. Additionally, we have model specific preprocessing steps.

2. Learning Rate

The learning rate is also an important factor in training a CNN model. It determines how fast or slow the weights are adjusted during the
learning process.

3. Regularizers and Dropout

Kernel regularizers are important when training a CNN as they prevent overfitting by adding a penalty term to the loss function. This
encourages simpler models that can generalize better on unseen data. Dropout refers to randomly dropping out neurons during each iteration
of training, this helps reduce complexity within the network and in turn also prevent overfitting.

4. Optimizer

Optimizers are algorithms that are used to adjust parameters in order to minimize our loss function. Common optimizers used for training CNN
models include stochastic gradient descent (SGD), Adagrad, Adam and RMSprop. Each optimizer has its own strengths and weaknesses which
must be taken into account when selecting one for use in training a specific model.

7

The Training Environment
The training environment was set up inside a Jupyter notebook and
trained on Kaggle, because of the free GPU acceleration.

The image data processing is set up with the ImageDataGenerator class of
the Keras library. This class allows for an easy setup of a Python generator
that loads, augments and preprocesses the image data during training in
predefined batches. This has the advantage of avoiding RAM limitations.
The generator is set up to augment the data by rotating, shifting and
zooming into it and to rescale the image arrays to be between 0 and 1.
Additionally the VGG19‘s preprocessing function is passed which converts
the images to BGR and flips them on the head. We also scale up the 48 x
48 images of the dataset to 224 x 224 which is the ideal input size of the
VGG19 net.

The actual model consists of the VGG19 with the two 4096 neuron dense
layers swapped with two 128 neuron dense layers accompanied by
dropout layers, regularizers and a final 3 neuron dense layer representing
the classes. The VGG19‘s last convolutional block is also set to be
trainable to extract the features of the facial emotions.

We have a relatively low learning rate of 1-e5 given the fine nuances to be
learned and optimize for categorical crossentropy with the Adam
optimizer. To check for overfitting during training we split 20 percent of
the training data and use it as validation set.

8

Load Image Batch

Preprocess
and Augment

Train Model

Training Step

Load Image Batch

Predict LabelsUpdate Accuracy

Validation Step

Model Testing
After training the model for around 75 epochs, the training stopped
because the validation loss did not decrease anymore. On the final
training iteration, the model achieved a accuracy of around 80
percent on the training data and 75 percent on the validation data
which is according to my research reasonably high for this task and
the used dataset. The final model configuration resulted from trial
and error after a lot of attempts with other parameters and model
structurs which yielded unsatisfying results.

Additionally a notebook was set up for examining the model with the
test dataset and to try some manual predictions. Evaluating the
model with the test dataset resulted in around 78 percent accuracy.
Given the inherit ambiguity of facial emotion recognition and the
limitations of the dataset this result can be seen as acceptable.

Manual testing with random images from the internet proved to
work reasonably well for images that are also clear to identify for a
human. The process of manual prediction is described on the right.

9

Load Image

Convert and Preprocess

Predict Class Membership

1 Happy

	Folie 1: Emotion Detection in Images
	Folie 2: Overview of the Implementation
	Folie 3: CNNs and Transfer Learning
	Folie 4: Frameworks and Base Model
	Folie 5: Dataset Criteria
	Folie 6: The Three-Emotions-Dataset
	Folie 7: Model Training Prerequisites
	Folie 8: The Training Environment
	Folie 9: Model Testing

