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1 Introduction
Topic modeling is an influential statistical methodology employed to identify dominant themes and

reveal the inherent semantic framework within extensive text collections. Its applications span a wide

range of fields, including information retrieval, sentiment analysis, trend discovery, the biomedical

domain, software engineering, and the analysis of social networks. By organizing and making sense

of extensive and unstructured data, topic modeling enables researchers to identify patterns that might

otherwise remain hidden. The methodology acts as a conduit for illustrating the vast quantities of

data produced by advancements in computer and web technologies, which is done by transforming

important latent variables and prominent features inside text corpora into a more accessible low-

dimensional representation. (Churchill & Singh, 2022)

1.1 Foundational Methods and Limitations

Classical statistical topic modeling methods, such as latent semantic analysis (LSA), probabilistic

latent semantic analysis (PLSA), and latent Dirichlet allocation (LDA), are considered to be the foun-

dation of topic modeling and have been the focus of research for around three decades. These meth-

ods have undergone extensive research, evaluation, and refinement, making them effective tools for

identifying prevalent themes in text corpora. , (Alghamdi & Alfalqi, 2015), (Abdelrazek et al., 2023)

Despite the proven effectiveness of classical methods, there is an ongoing drive within the research

community to develop newer and more sophisticated topic modeling techniques. This stems from the

limitations of classical models regarding their ability to handle the characteristics of more recent and

novel text data types. The increasing complexities of these different types of data, including short

texts with few words (Qiang et al., 2022), (Likhitha et al., 2019), multi-modal information (Churchill &

Singh, 2022), and the need for incorporating external knowledge sources (Yang et al., 2020), (M. Xu

et al., 2017), (Xie et al., 2015) have spurred the exploration of advanced approaches.

1.2 Branching Out

One prominent direction in this quest for improvement is the rise of deep learning-based topic models.

By leveraging neural networks, these models aim to learn more complex and flexible representations

of text data. (H. Zhao et al., 2021) Additionally, researchers have been exploring specialized topic

models tailored to handle dynamic and temporal aspects of data, allowing for insights into evolving

trends and themes over time. (Hong et al., 2011), (Delvin & Hady, 2022)

Furthermore, the incorporation of external knowledge sources into topic modeling methods has

shown promise for enriching the semantic understanding of the underlying topics. This integration

empowers topic models to make more informed and contextually relevant inferences, thus enhancing

their utility in real-world applications. (X. Zhao et al., 2021), X. Xu et al. (2022)

Moreover, the emergence of various topic models, such as Author-Topic Models (Rosen-Zvi et al.,
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2012), Structured Topic Models (Hanna M., 2008), and Neural Topic Models (H. Zhao et al., 2021),

indicates a diversification of approaches to address specific challenges and limitations faced by clas-

sical methods. These newer models strive to handle domain-specific complexities, adapt to varying

data types, and improve the interpretability and robustness of topic modeling results.

While classical statistical topic models remain commonly used methods for topic modeling, the on-

going exploration and adoption of newer approaches signify a collective effort to overcome limita-

tions and better align with the demands of modern data sources and applications.(Abdelrazek et

al., 2023) As scientific advances in unsupervised machine learning continue to drive progress in the

field, topic models are poised to play a crucial role in summarizing and understanding the vast and

ever-expanding digitized archives of information.

1.3 Paradigm Shift

As we delve into the heart of this transition, a crucial question emerges: How do these newly emerg-

ing artificial intelligence (AI)-based methods, particularly the most recent LLMs like GPT-3 and his

successors, compare with the well-established traditional statistical algorithms in the realm of topic

modeling?

These models, characterized by their impressive pre-training and multitasking capabilities, resulted

in fundamentally new approaches to natural language processing (NLP). Their innate ability to rec-

ognize a vast number of textual patterns and infer semantics allows them to operate effectively as

unsupervised problem solvers. This means that, unlike traditional algorithms that often require labori-

ous fine-tuning and domain-specific adaptations, LLMs have the innate capability to adapt to diverse

use cases with minimal or no additional training. (Radford et al., 2018)

Given the general push towards AI methodologies in the topic modeling space, the objective of this

thesis is to conduct a systematic and in-depth analysis of the trade-offs between state-of-the-art

LLMs and traditional statistical algorithms in the realm of topic modeling. Specifically, the thesis aims

to address the following questions:

1. What are the distinctive characteristics of LLMs and traditional statistical algorithms when em-

ployed for topic modeling?

2. How do these approaches perform in terms of computational intensity and topic quality, mea-

sured by quantitative and qualitative means?

3. What are the implications of choosing one approach over the other based on the specific goals,

dataset characteristics, and available resources?

By examining these questions, the thesis will support researchers and practitioners in making in-

formed decisions when selecting the most suitable approach for their specific requirements. The
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research not only contributes to the academic discourse on topic modeling but also serves as a prac-

tical guide for navigating the intricate landscape of LLMs and traditional statistical algorithms in the

context of topic modeling.

1.4 Thesis Structure and Methodology

The beginning of the thesis consists of a comprehensive literature review, which serves as the foun-

dational element. This section offers an overview of prior research endeavors, encompassing both

traditional statistical algorithms and the utilization of LLMs for topic modeling. The literature review

entails the identification of key studies, findings, methodologies, and models that have contributed to

this domain. By analyzing the existing literature, this section aims to identify gaps and limitations that

will be the focal point of this thesis.

The review will start with an in-depth exploration of the evolution of topic modeling algorithms from

traditional statistical algorithms to neural models. By examining the advancements made in the field,

we can gain a deeper understanding of the capabilities and limitations of these algorithms, ultimately

gaining a better insight into their potential applications. Following, there is a detailed analysis of

topic model evaluation metrics with a discussion of their advantages and drawbacks. In the realm of

topic modeling, evaluating the performance of models is crucial for ensuring accurate and meaningful

results. By understanding these metrics, researchers and practitioners can make informed decisions

regarding the effectiveness or limitations of their topic modeling results.

The following section contains a comparison of algebraic, probabilistic, and LLM-based topic models.

The basis for the analysis is a review of multiple studies dedicated to the respective topic models.

This analysis is framed around multiple factors, including computational costs, topic quality, preferred

document types, and robustness. Additionally, we will look at the granular details of the methodolo-

gies, parameters, and datasets that were employed in the reviewed papers. This serves as a basis to

detect commonalities, trends, and potential approaches for the experiment that is done later on in the

thesis. Lastly, the findings are summarized, and different scenarios are considered and discussed,

determining which topic model type is better suited for a specific situation.

Subsequently, the thesis transitions into a thorough examination of LLMs, starting with OpenAI’s GPT-

3 model. Within this section, the workings of the newest generation of LLMs are discussed, and the

relevance of these models in the realm of topic modeling is outlined. Given the relatively recent

emergence of this type of LLM, we will use our discoveries regarding the field of topic modeling as

a whole and our understanding of the usage of the LLM to derive a suitable methodology for topic

modeling that extends the current approaches.

The thesis then progresses into an experimental section, where traditional statistical algorithms are

compared to the GPT-3.5 model underlying ChatGPT regarding their performance on different doc-
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ument types. The results are then subjected to quantitative measures for comparison. Challenges

encountered during the experiment are addressed, and the strategies employed to mitigate them are

expanded upon. Continuing the analysis, the subsequent chapter focuses on a qualitative assess-

ment with the GPT-4 model, which is designed to evaluate the quality of topic modeling results derived

from the aforementioned experiment. The outcomes of the qualitative assessment are analyzed to

determine the preferred method for each of the different document types and to evaluate if automated

topic model metrics and qualitative assessment coincide.

Finally, the thesis concludes with a summarized overview of the entire thesis, including the research

conducted and the outcomes obtained. The implications of the findings are discussed, and potential

improvements and developments within the field are explored.

2 Literature Review
To establish a solid theoretical foundation and further evaluate the strengths and weaknesses of the

individual topic modeling approaches, this literature review first covers the evolution of the techniques

used in the field. Thereby, we will examine selected papers on key techniques regarding their objec-

tives, limitations and findings on the performance of the techniques on different document types. We

will move forward in a problem-oriented fashion and derive an understanding of why the field of topic

modeling has developed into its current form. Regarding the selection criteria for the literature, there

was an emphasis on including important papers that defined the field as a whole and also studies

that contributed novel but more niche topic models that display the diversity of the field.

2.1 From Algebraic to Probabilistic Models

We start the review with LSA, which can be considered the precursor to all other topic models, al-

though the term topic was not explicitly used during the time of creating the model. LSA was de-

veloped by Deerwester and colleagues with the main goal of providing an innovative approach to

automatic indexing and retrieval that overcomes the limitations imposed by the existing techniques

at the time, which were dependent on term-matching. The authors’ objective was to address the

challenge faced by users in retrieving documents based on conceptual content, as individual words

do not offer reliable indications of a document’s conceptual topic or meaning.

Although the paper reported that the proposed approach of LSA was superior to simple term match-

ing, the authors themselves considered the result only ”modestly encouraging” as the study faced

several drawbacks and limitations. This includes faults in the methodology and issues with the used

datasets. (Deerwester et al., 1990) Nonetheless, this paper marks the beginning of what would be-

come the field of topic modeling.

Building upon the LSA model, we will next look at pLSA which was first employed by Hoffman. While

LSA is based on matrix factorization, pLSA works with a statistical generative model, which marks the
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transition from non-probabilistic to probabilistic models. The pLSA model was developed to address

some of the limitations of LSA, like the unsatisfactory statistical foundation.

The generative model underlying pLSA allows for dealing with polysemous words, domain-specific

synonymy, as well as distinguishing between different types of word usage. Additionally, due to

the aforementioned theoretical advantages of pLSA compared to LSA, the study found that pLSA

outperformed both LSA and the older term matching approach on all types of document collections

that were tested. (Hofmann, 1999)

2.2 The First Topic Model and Extensions

The next model we will examine is called latent Dirichlet allocation (LDA), with Dirichlet referring to

the probability distribution that is used in the LDA model. It was developed by Blei, Ng, and Jordan

and is certainly the most influential and the first ”real” topic model. The paper in which the model is

showcased is also the first that explicitly uses the term topic.

pLSA suffers from several problems, including overfitting due to the linear growth of parameters with

corpus size, difficulty in assigning probabilities to new documents outside the training set, and limited

flexibility due to several constraints. Therefore, LDA was proposed as an improvement over pLSA. The

authors report that LDA is a powerful and flexible model that can effectively capture the latent structure

of large collections of documents and provide accurate predictions for various tasks, outperforming

the older pLSA approach.(Blei et al., 2003) Nonetheless, the LDA model also has some limitations,

which consequently lead to extensions of the original model.

2.2.1 Parameter Selection and Topic Correlation

An important aspect of the LDA model is that the number of topics that are expected in the documents

must be defined manually.(Teh et al., 2004) Finding the best value for the parameter happens mostly

by testing different values and evaluating the resulting topics. (Churchill & Singh, 2022)

A model that alleviates this issue is called the Hierarchical Dirichlet Process (HDP). The main ad-

vantage of HDP over LDA is that HDP does not require the specification of the number of topics

beforehand, unlike traditional LDA models. Instead, the number of topics is inferred from the data,

which can be useful when the number of topics is unknown or may change over time. The authors of

the paper that proposed the HDP report that the model performs on par with the optimal LDA model

for the documents used in the study, with the benefit of not having to define the number of topics

beforehand. (Teh et al., 2004)

Another limitation of LDA is that the model assumes that the topics in a document collection are

independent of each other, which is not always the case in real-world scenarios. The Correlated

Topic Model (CTM) is designed to address this limitation in the LDA model by using a more flexible

distribution, namely the logistic normal distribution. This change allows for correlation between the
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topic proportions and provides a more realistic model of the latent topic structure.

According to the authors of the model, the CTM was found to give a better fit than the LDA on the

documents employed in the study. Furthermore, the CTM was found to provide a natural way of

visualizing and exploring unstructured collections of textual data. (Blei & Lafferty, 2005)

2.2.2 Bag-of-Words Assumption and Target variables

LDA is based on the bag-of-words assumption, which means that the order of words in a document

can be neglected. The authors of the LDA already noted in the original paper that the bag-of-words

assumption allows words that should be generated by the same topic to be allocated to several

different topics. (Blei et al., 2003) The problem with ignoring the order of words in a document is that

it can result in less meaningful inferred topics.

To combat this issue, Wallach proposed a hierarchical Bayesian model that integrates bi-grams into

the topic modeling process. The authors report that the bi-gram topic model outperforms LDA on two

data sets in terms of predictive accuracy. Additionally, the inferred topics are less dominated by func-

tion words than are topics discovered using LDA, potentially making them more meaningful. Function

words are words that serve a grammatical or structural role in a sentence rather than conveying

content or meaning, for example, ”the”, ”a”, ”in”, ”on”, etc. (Hanna M. Wallach, 2006)

LDA is an unsupervised topic model algorithm, meaning that only the words in the documents are

modeled. In general, the original LDA is not really suitable for prediction tasks because it is not

designed to infer topics that are predictive of a response variable. For example, to predict a movie

rating based on the topics in a review. This stems from the dimensionality-reducing component of

LDA, which results in topics that correspond to dominant structures in the corpus instead of being

useful for predictions of certain target variables.

To solve this problem, Blei and McAullife developed a supervised variant of the LDA model called

sLDA. The initial sLDA model is trained with a labeled dataset using a maximum likelihood approach.

After training, the sLDA model can then be used to predict the response variable for new, unlabeled

documents based on their inferred topic distributions.

Testing the sLDA model on two prediction problems revealed a better performance of the sLDA com-

pared to using standard LDA topics with regression afterward. (Mcauliffe & Blei, 2007) However, the

fact that sLDA is a supervised model means that it requires labeled data for training, which can be a

limitation in some cases where labeled data is not available or is difficult to obtain.

2.2.3 Topic Evolution

Another limitation of LDA that results from the bag-of-words assumption is that the model ignores the

sequential structure of each document. The sequential LDA (SeqLDA) model aims to address this

issue by accounting for the position of each segment within a document to explore how topics evolve
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within a document.

The SeqLDA model accounts for the evolution of topics in a document by explicitly modeling the

underlying document structure, specifically the individual segments. Thereby, the topic distribution of

each segment depends on that of its preceding segment, and the progressive topical dependency is

captured.

According to the authors, the SeqLDA outperforms LDA and generates a superior sequential struc-

ture of the topics in their experiment on a collection of books. (Du et al., 2012) To summarize the

development of the different statistical models that have been covered until now, the following figure

illustrates the order of development:

Figure 1: Development of traditional topic models

LSA

pLSA

LDA

HDP CTM BLTM sLDA seqLDA

Source: Own results

2.3 Novel Approaches

After looking at the classical statistical models and more modern derivations of them, specifically

variants of the prominent LDA model, we will now look into novel approaches to topic modeling.

2.3.1 NMF

Non-negative Matrix Factorization (NMF) is, like LSA, a non-probabilistic method of topic modeling.

Thereby NMF is an approach that approximates a non-negative matrix by computing the product of

two low-rank non-negative matrices. Its capability to generate results that are meaningful regarding

their semantics and that can be easily interpreted in clustering scenarios has led to the widespread

adoption of NMF as both a clustering method for document data and a technique for topic modeling.

(Kuang et al., 2015)
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Compared to other methods, NMF may be a superior choice when noisy datasets are used for topic

modeling. This is because the utilization of pure dimensionality reduction approaches like NMF,

which is based on matrix factorization, allows eliminating noise and extracting features from sparsely

occupied high-dimensional spaces. (Churchill & Singh, 2022) Nonetheless, like many other topic

modeling algorithms, several variants of NMF have been proposed over the years to account for its

shortcomings. For example, semi-supervised NMF models that differ from standard NMF in that they

incorporate additional information in the factorization process. (Haddock et al., 2020)

NMF has gained significant popularity in the field of topic modeling for analyzing extensive documents.

However, the topics generated by NMF often tend to be overly general and redundant, lacking in minor

yet potentially valuable information for users. To address this issue, Suh and colleagues presented

an ensemble model of NMF that aims to uncover localized high-quality topics. The approach involves

utilizing an ensemble model to iteratively conduct NMF using a residual matrix derived from previous

stages, resulting in a series of topic sets. (S. Suh et al., 2016)

2.3.2 Graph-based models

Another, more recent approach to topic modeling is graph-based methodologies. In a paper by Wang

and colleagues, the authors introduced a topic model called the Hashtag Graph-based Topic Model

(HGTM) for handling semi-structured tweets. By leveraging the relationships between hashtags, the

HGTM establishes semantic associations between words. During the time of publication, the attention

towards mining topics on Twitter has been steadily increasing. Nevertheless, the concise and informal

nature of tweets results in a sparse vector representation that encompasses a vast vocabulary, which

leads to conventional topic models such as LDA frequently falling short of generating quality topics.

The HGTM has been demonstrated to be highly effective in uncovering a greater number of distinct

and cohesive topics. Additionally, the model has exhibited robust capability in managing sparseness

and noise within tweets. (Y. Wang et al., 2014)

In an effort to improve news data analysis, Zhang proposed constructing a keyword-keyword network

using a graph structure to improve upon current technologies that primarily rely on LDA-like models.

The author argues that these models fail to explore the intricate semantic connections among a set

of topic-related keywords. (Lidan, 2022) Another limitation of traditional topic models in discovering

latent topics from cross-media data becomes apparent when text is combined with additional infor-

mation such as geo-information, user-annotated tags, pictures, and videos. To address this issue, a

graph-based model called the Image-Regulated Graph Topic Model (IGTM) was introduced. By inte-

grating relational information among images into the modeling process, IGTM successfully uncovers

higher-quality underlying topics. (Z. Wang et al., 2015)
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2.4 Towards Transformer Models

To discuss another class of novel approaches, we will now look into transformer-based topic modeling,

which started with the advent of Word2Vec. The introduction of Word2Vec brought about a notable

transformation in the realm of topic modeling and NLP. Word2Vec revolutionized the creation of word

embeddings by introducing a novel approach that was characterized by its efficiency and precision.

Moreover, it demonstrated the potential of utilizing these word vectors to identify words with similar

semantic meanings.

Clustering these embeddings basically provides the same insights into the semantic structure as

traditional topic models like LDA. (Thompson & Mimno, 2020) This simplicity and effectiveness of word

embeddings made them the most popular form of modern NLP model that has been incorporated

into topic models. Word embeddings have become a fundamental component of many modern NLP

models, including BERT, which is a LLM that is based on word embeddings. (Churchill & Singh, 2022)

The novel approach of clustering word embeddings for topic modeling was proposed by Thompson

and Mimno who used LLMs like BERT, GPT-2, and RoBERTa. The models were employed by the

authors to generate word embeddings, which were subsequently subjected to clustering using a k-

means algorithm. It was observed that the resultant word clusters exhibit comparable characteristics

to those produced by an LDA model. In addition, a comparison was made between the performance

of these cluster models and LDA topic models. The results revealed that the cluster models can

achieve similar or even better performance than their LDA counterparts. (Thompson & Mimno, 2020)

A similar approach was used by Grootendorst who proposed the BERTopic model. The topic modeling

starts by representing each document as an embedding, which is done with the SBERT model, a

variation of the original BERT. Following that, there is a dimensionality reduction step to optimize

the clustering process. After clustering, the topics are extracted using a variation of TF-IDF that is

designed to model the importance of words in clusters of documents rather than individual documents.

The paper reports that BERTopic generally performs well across all used datasets. (Grootendorst,

2022)

To conclude the review of topic modeling development, the figures below illustrate the different general

procedures for either LDA-based models or models using word embeddings. Traditional probabilistic

models assume that documents are comprised of latent topics, which in turn consist of a distribution

of certain words. (Blei, 2012) This is illustrated in figure 2, which depicts the thought process behind

LDA. The left column represents the vocabulary of the entire corpus, which is used to model our

topics. The middle column contains the topics, which consist of the vocabulary and the corresponding

probabilities of individual words belonging to each topic. This is visualized using bar graphs. Finally,

the right column contains the corpus, which is a collection of documents where each document is

assumed to consist of various topics.
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Figure 2: Topic modeling process for the LDA model
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Source: Adapted from: Blei (2012), p. 78.

On the other hand, approaches based on word embeddings use contextualized word representations

to capture the semantic relationships between words in a corpus and group them into clusters based

on their similarity, which happens to produce similar outputs as the LDA model. (Thompson & Mimno,

2020)

Figure 3: Topic modeling process for word embedding models
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Source: Adapted from: Li et al. (2019), p. 691.

2.5 Performance Metrics

After examining the general direction that the field of topic modeling has taken since its inception, we

will now look into the different performance metrics for evaluating topic models. Specifically, we will

examine what evaluation metrics exist and their respective strengths and weaknesses. By looking at
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the research done, we can uncover a variety of different evaluation metrics, for example, perplexity

(Blei et al., 2003), coherence (David et al., 2010), stability (de Waal & Barnard, 2008), coverage, and,

as a qualitative method, human evaluation. Topics generated by algorithms are considered benefi-

cial if they can be comprehended by humans. Furthermore, human assessments hold significance

in topic modeling as they enable the development and validation of automated evaluation metrics

(Matthews, 2019). Despite the progress made in topic modeling through automated methods, human

assessment continues to be crucial in evaluating and refining these techniques. This is because it

serves as a benchmark to ensure that the generated topics are in line with human understanding and

expectations.

What all methods have in common is that there is no one perfect evaluation metric that fits every

type of use case. The metrics employed thus far present a varied depiction, rendering the verification

of the topic modeling results challenging. In sum, both perfectly selecting a suitable algorithm and

assessing the outcomes continue to be unresolved matters. Ideally, a set of different metrics is

employed in addition to qualitative human evaluation to get a comprehensive understanding of a

model’s performance. (Rüdiger et al., 2022), (Churchill & Singh, 2022).

2.5.1 Perplexity

The capability of the model to generate the documents in the corpus based on the learned topics is

measured by perplexity. Perplexity evaluates the model’s predictive power, thus indicating how well

the model explains the data. If the information gained from learning the outcome of a random variable

is minimal, it implies that the model is perplexed. (Abdelrazek et al., 2023) The usage of perplexity as

a metric for topic models has a long history, for example, the authors of the original pLSA (Hofmann,

1999) or the LDA used it for evaluation in their study, where they argued that a lower perplexity score

indicates better generalization performance of the model. (Blei et al., 2003)

In order to examine the connection between perplexity and information retrieval performance, Az-

zopardi and colleagues conducted an empirical study using the pLSA model. The findings demon-

strated a predictable relationship between topic model perplexity and precision-recall performance,

which was observed across multiple corpora. (Azzopardi et al., 2003) On the other hand, another

paper by Blei notes that the held-out accuracy that perplexity represents may not necessarily corre-

spond to good topic interpretation, which is an important goal of topic modeling. Therefore, there is a

need to develop evaluation methods that match how the algorithms are ultimately used. (Blei, 2012)

The critique of perplexity as a topic modeling evaluation metric is thereby common in the scientific

literature. According to a study conducted on the evaluation of topic models, it was found that perplex-

ity fails to measure the coherence of topics. The study suggests that topic model evaluation should

instead prioritize task-specific performance. Interestingly, topic models that achieve higher scores in

held-out likelihood may actually generate less semantically meaningful topics. While perplexity can
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be useful in assessing the predictive performance of topic models, it does not address the exploratory

objectives of topic modeling. (Chang et al., 2009)

Another paper that compared perplexity to another evaluation metric called topic stability reports that

perplexity is plagued by several deficiencies. One such issue is that perplexity is contingent upon

the vocabulary size being modeled, rendering it unsuitable for comparing models that employ distinct

input feature sets or operate in different languages. (de Waal & Barnard, 2008)

2.5.2 Topic Coherence

Given that the perplexity metric favors different models than human judgment, there was a significant

shift towards other metrics, one of them being topic coherence. (Hoyle et al., 2021) Topic coherence

refers to the degree to which the words or concepts in a given topic or set of topics are logically

connected and support each other. In other words, a coherent topic is one where the words or

concepts are related and make sense together, while an incoherent topic is one where the words

or concepts are unrelated or do not fit together logically. Thereby, topic coherence is not one single

metric but a whole group of metrics, for example, pointwise mutual information (PMI), normalized

pointwise mutual information (NPMI), or cosine similarity. (Röder et al., 2015)

Automated topic coherence measures were introduced by Newman and his team. They utilized re-

sources such as WordNet, Wikipedia, the Google search engine, and previous research on lexical

similarity and relatedness. By comparing human evaluations of learned topics from two different

datasets, the study provided evidence that a straightforward co-occurrence measure that relied on

PMI yielded results for the task that were highly similar to the level of agreement among human eval-

uators. (David et al., 2010) In another paper about topic coherence measures done with LDA and

LSA as topic models, the researchers found that the automatic topic coherence evaluation aligns with

human evaluations.

In another paper on topic quality metrics, the author reports that automated evaluation of topic quality

remains an important unsolved problem in topic modeling that represents a major obstacle to the de-

velopment of new topic models and that human judgment can be considered the gold standard in this

field. (Nikolenko, 2016) However, automatically assessing the cohesiveness of the identified topics

poses a challenge as an unsupervised task and does not ensure the interpretability of the topic model.

To gain further insights into the performance of various coherence metrics in topic modeling, Cam-

pagnolo and his team conducted an analysis to determine their sensitivity. Sensitivity was measured

by examining how these metrics behaved when applied to both well-formed and noisy topics, where

noisy topics are those containing irrelevant words. To validate the quality of the topics, a qualitative

survey was conducted with more than 60 participants, providing a benchmark for comparison.

The analysis conducted by the researchers reveals that specific metrics exhibit a higher susceptibility
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to noise, thereby validating their suitability in situations where users aim to emphasize topics contain-

ing unrelated terms. Conversely, alternative metrics display greater resistance to corrupt data and

are less affected by noisy information. These metrics can be employed when users seek to identify

more authentic topics among those uncovered. (Campagnolo et al., 2022)

On the other hand, Hoyle and colleagues doubt the usefulness of automatic topic coherence metrics

in general. Their study, which aimed to investigate the validity of automated coherence measures

for evaluating topic models, reports that these metrics have limitations and may not be fully reliable

in evaluating topic models. The authors argue that coherence measures designed for older models

may be incompatible with newer models, and automated evaluations declare a winning model when

corresponding human evaluations do not. (Hoyle et al., 2021)

2.5.3 Topic Coverage and Diversity

The evaluation of topic coverage relies on a collection of reference topics and coverage measures

that assess the extent to which the model topics align with the reference topics. The reference topics

signify the subjects of interest that topic models should uncover. Once a compilation of reference

topics is established, the coverage of these topics by a specific topic model instance refers to the

percentage of reference topics that are matched by the model’s topics. A reference topic is deemed

covered if one or more corresponding topics generated by the model exist. (Korenčić et al., 2021) In

one of the initial publications that introduced this metric, Chuang et al. conducted a comprehensive

analysis by comparing 10,000 variations of topic models with 200 domain concepts provided by ex-

perts. Their findings showcased the metric’s ability to guide decisions on the choice of topic model

and the model’s parameters. (Chuang et al., 2013)

In an attempt to enhance the automation of topic coverage measurement, Korencic and his team

introduced an unsupervised method. Their approach utilizes topic distance as a criterion for matching

topics and incorporates a range of coverage scores calculated for various distances. The paper

includes the design and evaluation of coverage metrics, as well as coverage experiments conducted

on two datasets. The authors demonstrate that this measure exhibits a strong rank correlation with a

supervised measure. Furthermore, the unsupervised measure can be easily applied to new datasets

and utilized for model selection and evaluation through ranking a set of topic models. (Korenčić et al.,

2021)

A metric that is related to coverage although different is topic diversity. Dieng and his team define

diversity as the proportion of distinct words among the top 25 words across all topics. An ideal topic

model should produce diverse topics and achieve a high score on this measure. Conversely, a low

score suggests the presence of repetitive topics, indicating that the model was unable to effectively

separate the themes within the corpus. (Dieng et al., 2020) Good topic diversity increases the likeli-

hood of encompassing all the themes present in the corpus, which holds significance in downstream
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applications like text summarization and classification. Topic diversity as a metric has a possible

application in parameter selection because it may indicate the optimal number of topics to be mod-

eled. If many topics are selected, there is a risk of having similar topics with overlapping keywords.

Conversely, if a few topics are chosen, the resulting topics may be broad and difficult to interpret.

(Abdelrazek et al., 2023)

2.5.4 Topic Stability

The last metric that we will look at is topic stability. As for topic coherence, various metrics can be

used to represent the stability of a topic model. However, the fundamental approach involves assess-

ing the similarity between topics in multiple iterations of topic inferences. Greater model stability is

achieved when similar topics are consistently generated across different iterations. (Abdelrazek et al.,

2023) Stability across topics was first mentioned by Steyvers who argued that in topic modeling, there

are cases where it is beneficial to concentrate on a single specific topic or theme in order to better

understand each individual topic. In such situations, it is important to determine which topics con-

sistently appear across different inferences and which topics are unique and specific to a particular

inference. (Steyvers & Griffiths, 2007)

In a paper that investigated the improved suitability of topic stability as an evaluation metric com-

pared to perplexity, the authors argue that one of the key attributes of a useful topic model is that it

should model corpus contents in a stable fashion. That is, useful topics are those that persist de-

spite changes in input representation or model parameters. (de Waal & Barnard, 2008) Kherwa and

Bansal observed that the majority of authors in topic model papers tend to overlook this matter, opting

instead for a single random initialization and asserting the outcome of the topic modeling experiment

as conclusive. (Kherwa & Bansal, 2019)

Topic stability can thereby be used to control for a variety of different factors in topic modeling. For

example, in their investigation into the robustness of topics in the face of noisy datasets, the authors

assert that the inclusion of erroneous or noisy texts in corpora has the potential to undermine topic

stability. Thus, understanding how well a topic modeling algorithm performs when confronted with

noisy data becomes imperative. The study reveals that different types of textual noise can exert

varying impacts on the stability of topic models. (Su et al., 2015) Greene and colleagues discuss in

a separate study on topic stability that, despite the various topic modeling algorithms proposed, a

common obstacle to effectively utilizing these techniques is the choice of an optimal number of topics

for a given corpus. They argue that a model with the right number of topics will be more resistant to

changes in the data and consequently demonstrate improved topic stability. (Greene et al., 2014)

2.6 Comparative Performance Analysis

After examining the metrics used in the field of topic modeling, we will now look at the characteristics

of how topic models behave in terms of the following points:

18



• Scalability: What are the computational costs of a model, and what size of dataset is optimal?

• Topic Quality: How do the models compare to each other regarding the quality of the resulting

topics measured by various metrics?

• Document Characteristics: What type of documents does a model perform best on, and are

there documents that do not work well?

• Robustness: What influence do preprocessing steps and parameter selection have on perfor-

mance?

The focus here will be on algebraic, probabilistic, and transformer-based models representing each

of the major categories of topic modeling approaches. Additionally, we will look at the methodologies,

metrics, datasets, and data processing steps of each respective study.

2.6.1 LSA and LDA

In the initial paper, the authors of LSA report that the method is scalable and can be applied to large

collections of texts, given the economical representation of the documents. (Deerwester et al., 1990)

Another early study done on LSA mentions that in order to conduct the matrix decomposition of the

corpus, a substantial volume of text is necessary. The inclusion of more text improves the quality

of the model’s outputs by offering numerous contexts where words can co-occur with one another.

Thereby, a minimum of 200 contexts, such as sentences or paragraphs, are typically required. (Foltz,

1996)

Moving away from older papers on LSA that did not really focus on topic modeling, we will now look

at a more recent study conducted by Zengul et al. The objective of the study was to compare three

different topic modeling methods, namely LSA, LDA, and Top2Vec, using a COVID-19 textual data

corpus. The study aimed to provide guidance for researchers interested in using topic modeling

methodologies and to help them determine which methodology to use. Interestingly, the paper does

not try to declare a superior topic model but compares the output of the three models in terms of

similarity. The outcome of the experiment reveals that LDA topics have a high correlation with Top2Vec

topics, followed by LDA and LSA, and lastly LSA to Top2Vec.

Regarding scalability, they found that LSA does not require such high computational resources for the

same size of data compared to LDA. The authors argue that although both LSA and LDA yield quality

topics if solid data preprocessing is done, LSA should be preferred when computational resources

are of concern. The paper reports that topic modeling on a 65.000 abstract dataset is possible with

a desktop computer when LSA is used but requires significant computing resources when LDA is

employed. The same holds true for Top2Vec which is a word embedding-based methodology that

also requires significant computing resources. (Zengul et al., 2023)
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Regarding scalability, they found that LSA does not require such high computational resources for

the same size of data as LDA. The authors argue that although both LSA and LDA yield quality

topics if solid data preprocessing is done, LSA should be preferred when computational resources

are of concern. The paper reports that topic modeling on a 65,000 abstract dataset is possible with

a desktop computer when LSA is used but requires significant computing resources when LDA is

employed. The same holds true for Top2Vec, which is a word embedding-based methodology that

also requires significant computing resources. (Zengul et al., 2023)

In a paper that compared the effectiveness of LDA and LSA in the context of a content-based movie

recommendation system, we can derive another interesting insight into the behavior of these models

regarding computational costs. It is mentioned that LDA had a lower computational cost than LSA, but

it is important to note that 500 topics were modeled with LSA, whereas LDA was used to model only

50 topics. According to the authors, the different topic numbers were chosen because LSA performs

better for a greater number of topics. (Bergamaschi & Po, 2015) Another similar study that compares

LSA to LDA on an e-book dataset reports that in terms of topic coherence, LDA outperforms LSA.

The highest coherence value was achieved by the LDA model when 20 topics were used, whereas

the LSA model performed best with 10 topics. This is in direct contrast with what was mentioned

in the previous study. Nonetheless, what both papers have in common is that they consider the

pre-processing of the text data to be vital for good topic quality (Mohammed & Al-augby, 2020)

Another paper that compared LSA to LDA on a scientific abstract dataset further delivered evidence

that LDA performs better than LSA regarding topic coherence. Although, oddly enough, because a

standard implementation of LSA and LDA was used in this study, LDA outperformed LSA regarding

runtime for every number of topics to be modeled. What coincides with other papers is the fact that

different preprocessing steps of the text corpus have an influence on the resulting topics. In this case,

there was an altered coherence score. (Bellaour et al., 2021)

Much like choosing appropriate preprocessing measures, the identification of the best-performing

number of topics in LSA poses a significant challenge. This is backed by a paper that introduces

LSAView, a system aimed at facilitating interactive exploration of parameter choices for LSA models.

The authors argue that determining the appropriate model parameters to employ for various data

domains and types of analyses represents one of the most significant challenges when using LSA.

(Crossno et al., 2009) In their study, Naili and her team aimed to analyze the impact of these param-

eters on topic segmentation quality and to determine the most effective ones. They report that their

experiments demonstrate that the selection of LSA parameters greatly influences topic segmentation

quality. (Naili et al., 2018)

Another study that analyzed the performance of LSA on a descriptive answer corpus reports that LSA

does not perform well on noisy input data. Furthermore, it was noted that various factors, such as
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corpus preprocessing, the generation of the term-document matrix with and without a term weighting

function, and the selection of dimensionality, significantly influence the performance of LSA. (Kaur &

Kumar, 2019) Evangelopoulos and his colleagues expand widely on this and also provide evidence in

support of these findings, suggesting that although LSA has wide-ranging applications, researchers

must exercise thoughtful parameter selection and methodological considerations.

The literature extensively discusses the empirical examination of selecting a suitable number of latent

semantic dimensions; however, no conclusive findings have been established. Another unresolved

concern is term selection, which is necessary to ensure computational efficiency and prevent over-

fitting in the semantic space. One commonly used method is to eliminate terms that have a low

frequency across the entire set of documents, known as frequency filtering. The authors emphasize

the importance of the vocabulary of terms employed in LSA in influencing the analysis’s outcomes.

Also, an important issue is the search for the most effective method of weighting term frequencies.

When dealing with article titles or brief text messages, implementing a log-entropy transformation

may yield superior outcomes. This is because such texts remain more closely aligned with the outer

edges of language structure, where a handful of commonly occurring words can significantly impact

meaning. On the other hand, TF-IDF proves more adept at uncovering patterns within the central core

of language. It identifies larger clusters of terms that tend to occur together at moderate frequencies.

(Evangelopoulos et al., 2012)

The last study dedicated to LSA provides another interesting take on the relationship between LSA

and corpus size. In a comparison study of LSA and LDA, Cvitanic and his team argue that LSA cannot

accurately predict how people associate words. This happens because of the way LSA represents

words, making them seem more similar than they actually are and following rules intrinsic to the

method that do not always fit real-world language use. Although these criticisms are important at the

word level, they might not matter as much when there is a larger collection of documents to work with.

(Cvitanic et al., 2016)

2.6.2 NMF and LDA

Moving on from LSA, we will first look at the behavior of another algebraic topic model, namely NMF.

In a comparative analysis of LDA and NMF using multiple short text datasets containing texts with

average lengths ranging from 3.46 to 14.34 terms, the authors observed that NMF outperformed LDA

in terms of topic generation. Short texts are known for their noise and sparsity, resulting in insufficient

information for successful statistical learning with LDA. Conversely, NMF proves to be more effective

in dealing with this type of data. (Chen et al., 2019) On the contrary, a comparative analysis of

different topic modeling techniques revealed that while the LDA and NMF methods produced higher

quality and more coherent topics than other methods on a short text Facebook conversation dataset,

the LDA method stood out for its flexibility in providing more meaningful and logically extracted topics,
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especially when fewer topics were considered.

Additionally, a measurement of the topic coherence score revealed that reducing the number of topics

resulted in a higher coherence score for both LDA and NMF methods. While NMF and LDA exhibit

comparable performances, LDA demonstrates greater consistency. However, in terms of runtime

comparison between LDA and NMF methods, it was found that LDA was slower. (Albalawi et al.,

2020) Another research study conducted on collections of online news articles from different sources

and Wikipedia pages discovered that NMF consistently generates more coherent topics compared

to LDA, which tends to produce topics that are more general and redundant. The choice of term

weighting strategy also significantly influences the results in all cases. The findings from NMF indicate

that it might be a better approach for topic modeling in specific corpora, particularly those related to

specialized or non-mainstream domains. (O’Callaghan et al., 2015)

On the other hand, a study done on Twitter data reports that NMF is not really suitable for short text

data because of its high sparsity. Therefore, the authors propose an extension to the standard NMF

topic modeling approach to make it more suitable for short texts. (Athukorala & Mohotti, 2022) Another

paper also done on Twitter data found that in terms of perplexity and coherence, LDA outperformed

both LSA and NMF in generating topics. (Tijare & Rani, 2020) An additional paper adds further

evidence of NMF not being as suitable for short text data. In a study that employs LDA and NMF on

text data in the form of short crime reports, the authors report that LDA outperforms NMF in terms of

topic coherence. (Pandey & Mohler, 2018)

Regarding the interpretability of topics, another similar study done on tweets mentions that the em-

pirical evidence suggests that both LDA and NMF algorithms are effective in detecting topics, with

LDA providing more meaningful interpretations and NMF being the faster option. (Suri & Roy, 2017)

Similar to LSA, another paper mentions that NMF is a suitable technique in topic modeling for ingest-

ing large document collections. However, the resulting topics often provide general and redundant

information about the documents, lacking potentially meaningful minor details that could be relevant.

(Suh et al., 2018)

Another study that adds to the evidence is done by Papadi et al. The research objective of the case

study was to compare different topic modeling methods for analyzing conversation transcriptions

between customers and agents in a call center, with the aim of improving the efficiency and user

satisfaction of customer care services. According to their experiment, LDA generally outperformed

NMF in terms of several metrics, including coherence across a variety of topics. (Papadia et al., 2023)

2.6.3 BERTTopic and LDA

We will now move forward and look at the neural models, specifically LLM-based approaches like

the already introduced BERTopic. The creator of the original model found that BERTopic is generally
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slower than traditional topic modeling techniques such as LDA and NMF. To test the performance, the

authors used three datasets, with two of the collections containing a combined number of 18,500 news

articles and one consisting of 44,253 tweets, which are short text data. Although it was outperformed

regarding runtime by the other approaches, across all datasets, BERTopic consistently achieves high

topic coherence and topic diversity scores. Like many others, the author mentions the drawbacks of

automated metrics. The assessment of coherence and diversity in a topic can differ between users.

Therefore, although these measures can offer some insight into the performance of a model, it is

important to acknowledge that they are only indicative. (Grootendorst, 2022)

A comparison between topic models further adds to the evidence that BERTopic outperforms LDA on

short-text data in the form of tweets from Twitter. Regarding the quality of the topics, the authors note

that BERTopic provided a clear distinction between any identified topics, and the model was able to

generate novel insights compared to LDA, which delivered only superficial topics. Despite BERTopics

good performance, there were also some drawbacks, like that BERTopic may generate too many

topics, which need manual processing afterward, and that there are no objective evaluation metrics,

which generally makes it difficult to compare its performance to other topic modeling algorithms.

(Egger & Yu, 2022) The generation of too many topics was also mentioned for Top2Vec, which follows

a similar methodology than BERTopic (Zengul et al., 2023)

Another study that compared the performance of different BERTopic variants found that the choice

of clustering algorithm that is used can have a significant impact on the resulting topics. The study

used two datasets, the Course Evaluation Responses (CER) dataset, containing 62,522 short texts,

and a subset of the 20 Newsgroups (20NG) dataset, curated to contain only short texts. (de Groot et

al., 2022) This implies that the results of BERTopic are susceptible to methodological variables like

the choice of clustering algorithm for the embeddings and must be chosen to suit the type of data.

This means that, like LDA, which relies on parameter selection, the BERTopic model is also not a

one-size-fits-all approach and should be fine-tuned depending on the data that should be modeled.

When confronted with certain data, topic models like LDA and LSA do not perform sufficiently well.

Such is the case for the examination of responses to open-ended questions. Traditional topic models

are often ineffective in this task as they depend on co-occurrences, which are not commonly found in

brief survey replies. According to Xu et al., BERTopic outperformed LDA on a social survey dataset

by all criteria employed. The model provided results of quality similar to qualitative analysis in social

studies. However, like a lot of other researchers, the authors reported that, as a drawback, BERTopic

requires more computational resources than traditional topic models. (X. Xu et al., 2022)

Now that we have discussed all the major topic model types regarding the aforementioned perfor-

mance criteria, we will look at the details of the reviewed papers. As the last part of the performance

review, the following table contains important information about the number of topics that yielded the
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best performance, the evaluation criteria, the data and the pre- and post-processing steps that were

done for each study.

Table 1: Compilation of topic modeling research

Source Models Topic Evaluation Data Pre/Postprocessing

Deerwester,

1990

LSA 100 Precision Abstracts Removed words that only occur in one

document and 439 common words used

by SMART.

Crossno, 2009 LSA 30 Use case specific News Not mentioned

Bergamaschi,

2015

LSA, LDA 500, 50 Use case specific Movieplots TF-IDF weighting

Greene, 2015 NMF 20 Stability (Agree-

ment score)

News, Wikipedia

articles

Removed English stopwords, removed

terms occuring in less than 20 docu-

ments, TF-IDF term weighting and L2

document length normalization

Naili, 2016 LSA - Use case specific 25000 word cor-

pus

Stopword removal, stemming and TF-

IDF weighting

Cvitanic, 2016 LSA, LDA 150 Use case specific Patents Removed symbols, numbers, mispelled

words, stopwords and any words com-

mon to 90% or more of the patents

Suri, 2017 NMF, LDA 15 Human Asses-

ment

Tweets, Head-

lines

Removed URLs and stopwords and used

TF-IDF weighting

Pandey, 2018 LSA, NMF,

LDA

7 Coherence

(UMass)

Short crime re-

ports

Removed English stopwords, common

crime related words, words with length

less than three and used TF-IDF term

weighting

Suh, 2018 NMF, LDA 48 Coherence

(PMI), Coverage

News, Emails,

Research pa-

pers, Tweets

Not mentioned

Kaur, 2019 LSA 3 Use case specific Paragraphs Removed words that occur only a single

time and TF-IDF weighting

Chen, 2019 LDA, NMF 60-100,

100

Coherence

(PMI), Human

Assesment

Termgroups,

News, QAs,

Headlines

Not mentioned

Mohammed,

2020

LSA, LDA 10, 20 Coherence

(UMass, Cv)

Books Removed all numbers, symbols, use-

less words or letters, punctuation, words

with less than 3 characters, English stop-

words. Lowercasing and stemming.

Albalawi, 2020 LSA, NMF,

LDA

50, 20, 50 Recall, Precision,

F-Score

News, Facebook

conversations

Removed English stopwords, stemming,

lemmatizing, bigram-, trigram genera-

tion, and TF-IDF weighting

Tijare, 2020 LSA, NMF,

LDA

10 (LDA) Perplexity, Co-

herence (Cv,

UMass),

Tweets Removed Twitter handles, punctuations,

numbers, special characters, stopwords.

Stemming, lemmatizing and TF-IDF

weighting
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Source Models Topic Evaluation Data Pre/Postprocessing

Bellaouar, 2021 LSA, LDA 10, 20 Coherence

(UMass, Cv)

Research papers Removed stopwords, and any word com-

posed of a single character. Lemmatiz-

ing, lowercasing and bi-gram extraction

Egger, 2022 NMF, LDA,

BERTopic

10, 14, 100 Human Asses-

ment

Tweets Removed mentions (e.g., @users),

hashtags, unknown characters, emojis,

stopwords, numbers, and abbreviations.

Stemming, lemmatizing, TF-IDF weight-

ing, HDBSCAN clustering

Athukorala, 2022 NMF, LDA - F-Score, Coher-

ence (PMI), Hu-

man Assessment

Tweets Removed stopwords, punctuation, emo-

jis, usernames and hash symbols. TF-

IDF and IDF term weighting

Grootendorst,

2022

NMF, LDA,

BERTopic

10-50 Diversity, Coher-

ence (NPMI)

News, Tweets Removed punctuation, stopwords, and

documents with less than 5 words. Low-

ercasing and lemmatizing

de Groot, 2022 LDA,

BERTopic

5-30 Coherence

(NPMI), Diversity

(Dieng et al.)

News, Com-

ments

HDBSCAN clustering, k-means cluster-

ing

Xu, 2022 LDA,

BERTopic

9 Coherence

(NPMI), Diversity

(Inversed RBO),

Human Assess-

ment

Surveys Not mentioned

Papadia, 2023 NMF, LDA 20 Diversity (In-

versed RBO),

Similarity (RBO),

Coherence (Cv),

Classification

score

Customer Care

Transcripts

Removed stopwords and punctuation.

Stemming and lowercasing

Zengul, 2023 LSA, LDA 11 Coherence, Use

case specific

Abstracts Removed Englisch stop words and 1149

unique words. Created bi-grams and

five-grams. Lemmatizing, words in the

third person are changed to the first per-

son and verbs in the past and future

tenses are changed into the present.

Source: Own results

2.6.4 Summary and Evaluation

Now that all the results have been compiled, we will summarize the findings, starting with the algebraic

models LSA and NMF. The studies suggest that probably the greatest strength of both topic models

is their ability to handle large document collections due to their fast computation. Regarding topic

quality, the algebraic models yield mixed results, as they are often outperformed by the other models

regarding various metrics. Nonetheless, the limitations become less relevant with larger datasets,

where the computational costs are more important than granular topics.

If we compute the average number of topics from the table above that got the best results in the

studies, we get around 40 topics for LSA (excluding the 500-topic outlier) and 30 topics for NMF.

Therefore, the algebraic models would be the most suitable for modeling higher-level and broader

topics on large text corpora to gain a general understanding of what the documents are about with
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around 30–40 topics. Suitable datasets would be, for example, large collections of scientific papers,

abstracts or articles because, according to the reviewed papers, short texts are not really suitable for

this type of model.

The next type of model, which is the probabilistic LDA model, can be considered the middle ground

between algebraic and LLM topic models regarding computational intensity. Nonetheless, the com-

putational costs compared to algebraic models pay off by producing meaningful and interpretable

topics. LDA performs well on various types of text data, but might face challenges with very short or

rare-word-rich texts. This is a weakness that the model shares with LSA and NMF. If we also look at

the average number of topics for LDA, we get around 30 topics. Given these findings, LDA would be

best employed as an all-rounder for medium-sized document collections containing news, abstracts

or extensive customer reviews to uncover more detailed topics in a reasonable amount of time.

Following, we have LLMs like the examined BERTtopic model, which delivers fine-grained topics that

are the most interpretable in exchange for computational costs. It outperforms on noisy and sparse

short-text data, where the other models struggle, but is limited to smaller datasets due to the intense

computations. Therefore, we can conclude that the model would be best for getting granular insights

from short social media posts, text messages or online reviews. The figure below illustrates the

discovered relationship between computational costs and topic granularity.

Figure 4: Comparison of topic models
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We conclude our literature review and comparative analysis until now with the following overall find-

ings: First, the development of the field of topic modeling was and is very much dependent on the

evolution of data. This can be seen by examining the datasets used and the publication dates of

the respective literature in our table, where we can spot a shift towards short-text data like tweets.

Second, there is no one model that performs best on all tasks because every type of model has
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advantages and disadvantages. The model choice depends on factors like corpus size, data charac-

teristics or the type of topic to be modeled, e.g., broad or fine-grained. Evidence for this is provided by

looking at the development of the field of topic modeling, the variety of models, and the performance

of each approach regarding the different tasks.

What all models have in common is their reliance on and sensitivity to pre- or post-processing steps.

LSA, NMF and LDA depend on a trial-and-error process that includes testing different preprocessing

steps of the documents and also the selection of how many topics should be modeled. Also, the

results from embedding-based models like BERTopic can differ according to the accompanying steps,

like the choice of clustering algorithm in this case. Additionally, it is relatively hard to compare the

different models and papers with each other given the various choices of parameters, evaluation

metrics and data transformations, although some commonalities can be derived by examining the

processing steps of each study. This will be further examined in the experimental section, but first we

will move on to state-of-the-art LLMs.

2.7 State-of-the-Art LLMs

The emergence of GPT-3 initiated a paradigm shift in NLP by introducing an extraordinary capability

to generate natural language texts that are astonishingly similar to those authored by humans. With

175B parameters and 96 layers trained on an extensive corpus comprising 499B tokens from web

content, it surpassed its predecessor GPT-2 by more than a hundredfold in terms of size. Moreover,

GPT-3 outperformed all other models available at that time in both the magnitude and coherence of

the generated text. Notably, Microsoft’s T-NLG and Google’s T5-11B, which were the closest rivals

during its launch, were merely a fraction of GPT-3’s scale. (Dale, 2021)

A survey on GPT-3 found that the model is being applied in diverse domains such as developing

conversational AI chatbots, software development, creative work and business productivity. Thereby,

GPT-3 can generate product descriptions, advertisement headlines, blog ideas, email subject lines,

and even poetic descriptions for images. Additionally, a potential application of GPT-3 in the health-

care domain, such as supporting customer service and triaging patients, is mentioned. (Zong &

Krishnamachari, 2022)

2.7.1 Prompt Engineering

To interact with GPT-3, you typically provide it with a prompt or input text, and it generates a con-

tinuation or output text based on its learned patterns and structures of language. The quality and

relevance of the output text can vary depending on the complexity and specificity of the prompt. Ad-

ditionally, there are basically three methods for ”steering” an LLM like GPT-3 to perform the task at

hand, namely zero-shot learning, few-shot learning, and fine-tuning.

Zero-shot learning does not involve any explicit training on a task; few-shot learning involves a small
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amount of training data; and fine-tuning involves adapting the model to a specific task or domain

using labeled data. Both zero-shot and few-shot learning are typically handled via a prompt (Brown

et al., 2020) and basically during the inference step, whereas a fine-tuned model does not need a

prompt after the additional training has happened. (OpenAI, 2023b)

Given the obvious advantages of not having to further train a model for a specific task, zero- and

few-shot learning, and especially how to design prompts, are active fields of research. For example,

a study done by Si and colleagues tried to improve the reliability of GPT-3 by developing simple

and effective prompts that enhance its generalizability, social biases, calibration, and factuality. (Si

et al., 2022) Another study done on ChatGPT, a model that is built on GPT-3 and fine-tuned for

conversational interaction (OpenAI, 2022) developed a catalog of prompt engineering techniques in

pattern form, providing reusable solutions to common problems. By identifying patterns in prompts,

the catalog can help users design more effective prompts that are better suited for the task at hand.

(White et al., 2023)

There is not only work done on examining general prompt engineering but also on finding domain-

specific improvements. For example, a study done by Clavie and colleagues aimed to evaluate the

impact of different aspects of prompt engineering on the performance of LLMs for job classification.

The study found that prompt engineering, like optimizing the wording, is a critical factor in achieving

high performance on the classification task and that the results are greatly influenced by elements of

the prompt thought to be trivial. (Clavié et al., 2023) In another paper focusing on domain-specific

prompt engineering, the author proposes the CLEAR framework, which should facilitate the inter-

actions of students with ChatGPT for enhancing literacy education. (Lo, 2023) Another review on

prompt engineering in healthcare further adds to the evidence that users can achieve significant im-

provements in accuracy and generate high-quality results by creating customized prompts that are

designed for specific tasks and domains. (J. Wang et al., 2023)

To summarize these findings, we can conclude that the newest LLMs, especially GPT-3, enable a

promising approach to a variety of NLP tasks. The possibility to leverage the pre-trained ability of

these models to perform a variety of tasks with the help of carefully crafted prompts allows us to omit

the tedious task of compiling labeled training datasets. Nonetheless, the optimal method of prompt

engineering is currently an active field of research given the relatively recent emergence of GPT-3

and the fast iteration of the models, for example, ChatGPT and GPT-4. Given that the results of

using a model like GPT-3 are very dependent on the prompt, a parallel can be drawn here to what we

discovered regarding the robustness of the topic models that we discussed earlier on. Here also, the

results are dependent on parameter selection or pre-processing, for example.
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3 Experimental Section
The aim of the following experiment is to compare a novel ChatGPT-based topic modeling pipeline

with two standard implementations using three different datasets. By evaluating the results quantita-

tively through measures such as topic coherence and topic diversity as well as qualitatively with the

assistance of GPT-4, the objective is to determine whether the new pipeline outperforms the standard

implementations on specific datasets.

To conduct this experiment, we will utilize three distinct datasets that cover news articles, scientific

abstracts and tweets. Each dataset will be processed separately using both the novel ChatGPT-

based pipeline and the two standard implementations. For quantitative evaluation, we will employ

established measures such as topic coherence and topic diversity. Topic coherence will help us

assess the degree of semantic consistency within each set of generated topics, while topic diversity

will provide insights into the breadth and uniqueness of topics produced by each approach. The

combination of these two metrics will allow us to get a better overall picture of the performance of

the different topic modeling pipelines. For example, Dieng et al. defined the quality of topics as a

combination of good coherence and diversity. (Dieng et al., 2020)

In addition to quantitative evaluation, we will leverage GPT-4, which is to date the most powerful model

of the GPT family, to evaluate the quality of the generated topics. This qualitative assessment aims to

capture subjective factors that may not be fully captured by quantitative measures alone. The usage

of a state-of-the-art LLM for topic model evaluation was thereby first proposed by Rijcken et al. In

their study, they showed that ChatGPT is able to create useful descriptions for topics generated by

topic modeling algorithms. Thereby, they relied on the assessment of a domain expert, who deemed

most of the outputs from ChatGPT to be at least somewhat useful. (Rijcken et al., 2023)

For our experiment, we will therefore rely on the more powerful GPT-4 to label the resulting topics

and also to judge their quality. Through this experiment, we anticipate obtaining valuable insights

regarding which implementation performs best across different datasets. The results will shed light

on whether the novel ChatGPT-based pipeline surpasses standard implementations in terms of both

quantitative measures and qualitative evaluations.

3.1 Datasets and Topic Models

For this experiment, we will be utilizing three different datasets representing documents that require

general knowledge (news articles), expert knowledge (scientific abstracts), and also tweets, which

are short-text data and a weak point of traditional topic models. Each dataset has been carefully

selected based on the results of our literature review and to ensure variability and relevance to the

topic modeling task.

1. BBC Business News: The first dataset is a subset of the BBC News dataset compiled by

29



Greene and Cunningham. (Greene & Cunningham, 2006) The business news dataset consists

of 510 news articles, summing to a total word count of, 167729 and an average of 328 words

per news article. The reason this dataset was chosen is that it provides a curated collection of

news articles focusing solely on business-related articles, which facilitates topic interpretation.

Although the choice of vocabulary is narrowed down by the business focus of the articles, the

language in the documents is still comprehensible to a non-expert audience.

2. Arxiv Scientific Abstracts: Our second dataset represents documents that contain domain-

specific vocabulary and require expert knowledge to comprehend. The dataset contains around

38972 entries (Sayak & Soumik, 2020) from which we sample 500 random abstracts that will be

used for topic modeling. The 500 abstract subset contains, thereby, 85481 words in total and

around 170 words on average per document. The choice for this dataset was again based on

the literature review and to compare the topic models performances on documents with a more

niche vocabulary.

3. ChatGPT Tweets: The last dataset that we will use for topic modeling consists of around 500

000 tweets about ChatGPT. (Ansari, 2023) This dataset is also reduced to a sample of around

1000 documents, which sums to a total of 25168 words and an average of around 25 words

per tweet. This dataset choice is like all the others based on the results from the literature

review and can be considered the ”stress test” for the traditional topic models and the proposed

LLM-based pipeline.

According to the results compiled from the literature review, all three choices for the datasets are suit-

able for topic modeling and represent common document types in the field. Furthermore, although

the size of the datasets is on the smaller side, they provide sufficient data points for conducting mean-

ingful analysis while still being manageable in terms of computational requirements. The bottleneck

thereby is the time associated with the inference of the ChatGPT model, which will be discussed in

detail in the data preprocessing section.

The two models that will be our benchmark to compare the novel approach against are the LDA

model, representing a probabilistic model, and the algebraic NMF model. Thereby, the selection of

the models is based on the fact that they are widely used and their characteristics. Both models are

suitable for a wide range of documents and have a weak point for short-text data. This opens up

the possibility to compare the novel LLM-based pipeline to the performance of traditional models on

established use cases and also to see if there is an improvement in modeling topics from current

short-text data, which proves to be a challenge for standard approaches.
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3.2 Pipeline Design

In this section, we will look at the design of the two different topic modeling pipelines that will be used

in the comparison. First, we have a standard pipeline used with traditional topic models, and second,

the novel LLM-based approach proposed in this thesis. We will discuss the implementation steps

involved in both methods and explore how they uncover meaningful topics from the raw textual data.

First, we look at the overall steps that are required by both pipelines, which are the following:

1. Data Preprocessing: In this step, the raw text data is cleaned and preprocessed to remove

any irrelevant or noisy information.

2. Vectorization: Once the data is preprocessed, it needs to be transformed into a numerical

representation that can be used for modeling.

3. Topic Modeling: The vector representation of the documents is passed to the respective topic

model algorithm, which results in a set of topics.

4. Evaluation: The resulting topics are evaluated with quantitative metrics and qualitative assess-

ment.

3.2.1 Data Preprocessing

Arguably one of the most important parts is the data preprocessing or cleaning step. We can derive

a suitable methodology for the standard pipeline by looking at the results of the literature review.

Thereby, we can extract several important steps from the literature that we can employ in our own

experiment. First, we have the simple lowercasing of all words and the removal of stop words, which

are done to ensure that the text is clean and devoid of unnecessary noise. Removing stop words helps

to focus on the more meaningful content of the text. Next, special and non-alphanumeric characters

are removed to eliminate any unwanted symbols or punctuation marks that may interfere with the

analysis process. These characters can include commas, periods, exclamation marks or symbols

like the hashtag.

Following is the lemmatization of the remaining words, which plays a crucial role in simplifying and

standardizing text for improved topic modeling. By reducing words to their base or dictionary form,

this process enhances the accuracy of NLP techniques. Through lemmatization, the remaining words

are transformed into a consistent format, enabling more effective data analysis. An example of a

lemmatized word would be ”running” being transformed into its base form ”run”. An alternative to

lemmatization would be stemming, but unlike lemmatization, which considers the part of speech and

context to produce more meaningful results, stemming simply removes suffixes to derive the root form

of a word. After lemmatizing, we also remove words with a character length smaller than 3, as these

are mostly artifacts from lemmatizing or noise in the data that do not carry any significant meaning.
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The last step in the process involves the formation of bi-grams. Bi-grams are pairs of consecutive

words that help to capture the contextual meaning and relationships between words. The formation

of bi-grams plays a crucial role in enhancing the comprehension of language. By capturing more

context, bi-grams provide valuable insights into the relationships between words and improve the

overall understanding of topics. An example of a bi-gram would be the combination of two consecutive

words, such as ”natural language” or ”machine learning,” which can help extract deeper meaning from

text and enable more accurate analysis.

After discussing the standard pipeline, we will now look at the preprocessing step for the LLM-based

approach. The biggest difference is that the stop word removal, bi-gram and additional n-gram for-

mation parts are done by the ChatGPT model in one step. This is achieved by prompting the LLM to

extract keywords from the given document. Thereby, the LLM has the instruction to consider single or

multiple words that contain a lot of context about the document as keywords. The formulation of the

prompt follows best practice guidelines from OpenAI (Shieh, 2023) and can be found in the appendix.

This step is the most significant change in the novel topic modeling pipeline because the standard

approach uses a fixed set of stop words and a bi-gram formation approach based on simple statistics.

The idea here is to leverage the pre-training of the LLM to extract the words or phrases that carry

the most meaning in the document. To fully leverage ChatGPT’s capabilities and further improve the

prompt, we also pass the type of document as context. For example, we clearly instruct the model that

it should extract keywords from a business news article, not simply from a text. Additional steps that

are done after keyword extraction are lowercasing and removal of words with two or fewer characters,

for the same reason as in the standard preprocessing approach.

3.2.2 Vectorization

In order for machine learning algorithms to operate effectively, they require a numeric feature space.

When dealing with text data, it becomes necessary to convert our documents into vectors for the pur-

pose of performing machine learning tasks. This process is commonly known as feature extraction

or simply vectorization. The Bag-of-Words (BoW) model stands out as the simplest type of document

vectorizer, acknowledging that vocabulary contains both meaning and similarity. Though straightfor-

ward, this model is exceptional regarding its effectiveness and serves as the initial step towards more

advanced models. When using a BoW strategy to vectorize a corpus, each document within the

collection is transformed into a vector with dimensions matching the corpus’s vocabulary size.

In order to produce these vectors, we make use of two alternative methods that we will use for

both pipelines: term frequency (TF) vectorization and term frequency-inverse document frequency

(TF-IDF) vectorization. Based on a review of the literature, it is evident that these two options are

frequently utilized in topic modeling. The TF model takes a straightforward approach by populating

the vector with the frequency of each word as it appears in the document. In this encoding method,
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each document is represented as a multiset of its constituent tokens, and the count of each word

position in the vector corresponds to its value.

Nevertheless, the TF approach solely considers a document independently without incorporating its

context within the corpus. An alternative strategy would involve evaluating the relative frequency or

scarcity of tokens in the document compared to their occurrence in other documents. The main idea

is that meaning is most likely conveyed through the less common terms found within a document.

The TF-IDF encoding method adjusts the token frequency in a document based on the frequency of

the same token in the entire corpus. This technique emphasizes terms that are highly relevant to a

particular instance. TF-IDF calculates the relevance of each token individually, taking into account

its scaled frequency in the document and normalizing it by the inverse of its scaled frequency in the

entire corpus. (Bengfort et al., 2018)

3.2.3 Topic Modeling

With the vectorized document collections, we can further progress to the actual topic modeling pro-

cess. The standard pipeline will thereby employ both the LDA and the NMF models for generat-

ing topics. For the novel pipeline, we will take a similar approach to the word-embedding-based

methodologies that we discussed earlier. Therefore, the topic modeling step consists of clustering

the vectorized documents with the k-means algorithm. The choice for k-means was made because

the algorithm allows you to choose the number of clusters, which represent topics in our case. This

is very important and allows the two pipelines to be comparable in terms of topic coherence and

diversity because we will use the number of topics as our variable parameter to optimize for the two

metrics.

The k-means algorithm usually quickly and efficiently clusters a dataset within a few iterations and

works as follows:

1. Initialization: The algorithm starts by randomly placing k centroids in the feature space, where

k is the number of clusters you want to create.

2. Assignment: Each data point in the dataset is assigned to the cluster with the closest cen-

troid. The distance between a data point and a centroid is typically calculated using Euclidean

distance, but other distance metrics can also be used.

3. Update: After all data points have been assigned to clusters, the centroids are updated based

on the mean of the data points assigned to each cluster. This means that the centroid is moved

to the center of its assigned data points.

Steps 2 and 3 are repeated iteratively until the centroids no longer move significantly or a maximum

number of iterations is reached. This ensures that the algorithm converges and the clusters become
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stable. By repeating the assignment and update steps, the k-means algorithm aims to minimize the

within-cluster sum of squares, also known as the inertia or distortion. This means that the algorithm

tries to create clusters where the data points within each cluster are as close to each other as possible.

Normally, the number of clusters would be chosen with the elbow method or the silhouette score

(Géron, 2019), but for the use case of the experiment, we try to choose the number of clusters so that

we maximize topic coherence and diversity to get higher-quality topics.

In the context of our topic modeling pipeline, the intuition behind the clustering approach is the follow-

ing: Given that we created our vectors with either the TF or TF-IDF method, the clustering works by

grouping the documents together based on their similarity or distance in the created feature space.

The assumption is that documents that have similar TF or TF-IDF vectors are likely to contain similar

topics. By retrieving the words that comprise the cluster centers, we can get a representation of what

the documents in that cluster are about. In our case, we retrieve the top ten words from the cluster

centers, which can be interpreted as representative keywords or themes for the documents in that

cluster. They should give a sense of the main topics covered by the documents within that cluster.

Normally, the simple clustering of documents would not yield meaningful topics because the k-means

algorithm was not developed with topic modeling in mind. Therefore, the approach relies on the

preprocessing done with ChatGPT, which should be able to remove enough noise from the data to

yield meaningful topics.

3.2.4 Evaluation

The final step of our pipeline is the evaluation of the resulting topics with quantitative and qualitative

measures. To allow for choosing an optimum number of topics, both pipelines can be run for a range

of topics. Thereby, the topic diversity and coherence measures of each run are plotted to examine

their evolution over different numbers of topics. Additionally, we compute the best-performing number

of topics for each parameter combination in terms of both metrics. The idea is then to further use the

topics derived from the best-performing configuration for qualitative assessment with GPT-4, which

takes on the role of our annotator.

The qualitative assessment is inspired by the approach used by Hoyle and colleagues in their study on

automatic topic model evaluation. They asked human annotators to assess words from topic models

regarding word intrusion and rate their coherence. (Hoyle et al., 2021) For our experiment, the actual

instructions for the human annotators are repurposed as a prompt for the GPT-4 model. Thereby, we

instruct GPT-4 to rate the relationship of the words as either very related, somewhat related or not

very related, which is basically a qualitative coherence metric. In the second round of assessment,

GPT-4 is tasked with counting the number of word intrusions for each list of topic words. The results

are then averaged for every model-vectorizer combination. As a final step, we will then let GPT-4

label the topics. Before we move on to the implementation and results section, the following figure
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summarizes the two topic modeling pipelines:

Figure 5: Topic modeling pipelines
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Source: Own results

4 Implementation and Results
After discussing the topic modeling pipelines regarding their rationale, we will now look at the ac-

tual implementation and the results. Thereby, important technical details of the implementation, like

libraries, algorithms and parameters, are discussed. Additionally, we will look at the results of the

individual processing steps.
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4.1 Corpus Preparation

As already mentioned, the initial datasets, especially the abstracts and tweets, were reduced to 500

and 1000 documents, respectively. This was done to match the business news dataset and also to

reduce processing time and costs for the ChatGPT keyword extraction. The keyword extraction was

thereby done with the OpenAI Python library (OpenAI, 2023a) which features functions for facilitating

API calls towards their LLMs. For our purpose, we call the Chat Completions API of the GPT-3.5-Turbo

model.

The respective prompt can be found in the appendix. At the time of writing, the costs for 1000 tokens

are around C0,0014 for input and C0,0019 for output of the API. (OpenAI, 2023c) A token typically

consists of around four characters, which would be around three-thirds of a standard English word.

(OpenAI, 2023d) The following table summarizes the attributes, processing time and costs of the

resulting keyword datasets.

Table 2: ChatGPT keywords extraction

Dataset Documents
Total

Words

Average words

per document

Remaining

Words

Average

keywords

per document

Processing

time (m)

API Costs

(C)

News 510 167729 328 31692 62 43:07 0.36

Abstracts 500 85481 170 26300 52 38:15 0.18

Tweets 1000 25168 25 10761 10 25:40 0.05

Source: Own results

It is important to note that the prompt does not instruct the model to extract a certain number of

keywords but to extract the words and phrases that carry the most meaning. The words that are

going to be extracted are based on what the model has learned regarding word importance during

its initial training and the specific context of the document. This results in a greater reduction in

document size for the larger documents with a lot of common words, like the news articles, and a

smaller reduction for the smaller documents. Another critical factor to consider is the processing

time, which is considerable. The processing time is thereby heavily dependent on the stability of the

connection and the rate limit of the Chat Completions API. For the experiment, a two-second delay

after every request was implemented to avoid reaching the rate limit imposed by OpenAI. Therefore,

in an ideal circumstance without a rate limit, the actual processing times would be relatively faster.

Next, we will look at the results of the preprocessing and vectorization steps, which are compiled in

the next table below.

36



Table 3: Preprocessed datasets

Dataset Pipeline Total words Average words per document Vocabulary size

News TTM 79430 155 8729

News LLM 17432 34 10388

Abstracts TTM 44479 88 5191

Abstracts LLM 12801 25 9461

Tweets TTM 9087 9 3029

Tweets LLM 7332 7 4214

Source: Own results

Looking at Table 2 and Table 3, we can see that we get a significant reduction in total and average

words after the cleaning step for both pipelines. The more significant difference between them is

the ratio of total words to vocabulary size. Here, the LLM pipeline yields a much larger vocabulary

because of the nature of the keyword extraction process and the fact that we did not lemmatize or

stem the words. The keyword extraction can thereby generate n-grams that are naturally occurring

in the documents and are not changed due to their aiding in the interpretability of the topics. A

greater vocabulary size will result in more sparsity in the document vectors. If we look at the ratio of

vocabulary size to total words for the tweets in the TTM pipeline, we can see that we have a ratio of

around 1 to 3. Compared to the news, which has a ratio of around 1 to 10, and the abstracts, where

we have a ratio of 1 to 9. According to the literature review, this predicts a worse performance for

the tweets when using the TTM pipeline because both LDA and NMF are said to have a weakness

regarding their ability to deal with sparse vectors.

Regarding the technical implementation, we use Python list comprehensions for tokenizing, lower-

casing and removing words with special characters or numbers. The lemmatization is done with the

NLTK library’s WordNetLemmatizer, which uses the WordNet lexical database to identify the base

form of a word. (NLTK Project, 2023). For bi-gram formation, we use the Phrases module from Gen-

sim, which is a Python library for topic modeling. The Phrases library works by detecting and scoring

co-occurrences of words in a given corpus. By analyzing the frequency and proximity of word pairs,

it identifies bi-grams that occur more frequently than expected by chance. (Rehurek, 2023a)

4.2 Model Optimization

For the actual topic modeling, we use the Scikit-learn library’s implementation of LDA, NMF and k-

means. If we combine the possible combinations of datasets, vectorizers and topic models, we get

eighteen different test series. We run each combination forty times on a range of 10 to 50 topics.

The range was chosen with consideration of the results from Table 1. An important note is that all

other parameters of the respective algorithms were left at their standard values because tuning all

hyperparameters is outside the scope of this experiment. The same is true for the vectorization and

preprocessing steps where external libraries were used.
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The best-performing number of topics for the respective vectorizer-model combination was chosen

based on a ranking method. Thereby, two lists are created, representing either coherence or diversity,

with each list being sorted in descending order. The number of topics that ranks the highest for both

metrics is considered the winner. Table 4 showcases the results of the topic modeling runs, with the

top performers for each dataset written in bold font.

Table 4: Quantitative topic modeling performance

Dataset Vectorizer Model Best Performing Topics Coherence Diversity Time (s)

News TF lda 12 -21.14 0.54 82.8

News TF nmf 10 -20.95 0.76 55.5

News TF kmeans 47 -21.41 0.93 17.3

News TF-IDF lda 17 -20.65 0.96 38.1

News TF-IDF nmf 15 -20.63 0.91 55.4

News TF-IDF kmeans 25 -21.24 0.89 14.6

Abstracts TF lda 11 -20.72 0.43 53.3

Abstracts TF nmf 19 -20.58 0.75 31.3

Abstracts TF kmeans 20 -21.13 0.96 14.2

Abstracts TF-IDF lda 14 -20.38 0.93 27.5

Abstracts TF-IDF nmf 11 -20.64 0.87 35.4

Abstracts TF-IDF kmeans 42 -21.4 0.89 13.9

Tweets TF lda 10 -20.87 0.63 37.7

Tweets TF nmf 10 -20.75 0.82 16.0

Tweets TF kmeans 30 -20.69 0.83 13.4

Tweets TF-IDF lda 37 -20.93 0.76 28.4

Tweets TF-IDF nmf 14 -20.98 0.9 22.7

Tweets TF-IDF kmeans 19 -20.62 0.82 14.6

Source: Own results

Topic coherence is computed with the help of the Gensim library’s implementation of the UMass

metric. (Rehurek, 2023b) The UMass metric was chosen because of its frequent appearance in the

literature and its fast computation. Regarding the interpretation of the metric, a higher score indicates

more coherent topics, with the scores being negative in general. (Thielen, 2022) The computation of

the topic diversity metric is adapted from Dieng et al. with the change of using only the top ten words

instead of 25. A lower diversity is thereby considered inferior to a diversity close to one. (Dieng et al.,

2020) The figures displaying the evolution of the metrics for different numbers of topics can be found

in the appendix.

4.3 Topic Interpretation

Like already explained, the interpretation and qualitative assessment of the topics were done with

the more powerful GPT-4 model. The model was prompted via the Chat Completions API to assign a

coherence rating, detect word intrusions and label the topics. The respective prompts and the labeled

topics can be found in the appendix. Table 5 showcases the average ratings from this assessment.
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Like in Table 4, the top performers are marked in bold.

Table 5: Qualitative topic ratings

Dataset Vectorizer Model Rating Intrusions

News tf lda 1.58 1.42

News tf nmf 1.1 1.0

News tf kmeans 1.34 1.6

News tfidf lda 2.06 2.76

News tfidf nmf 1.07 0.73

News tfidf kmeans 1.16 1.24

Abstracts tf lda 1.09 0.91

Abstracts tf nmf 1.16 1.0

Abstracts tf kmeans 1.3 1.9

Abstracts tfidf lda 2.0 2.71

Abstracts tfidf nmf 1.0 0.82

Abstracts tfidf kmeans 1.17 1.31

Tweets tf lda 1.9 1.8

Tweets tf nmf 1.9 1.9

Tweets tf kmeans 1.57 2.0

Tweets tfidf lda 2.19 2.3

Tweets tfidf nmf 2.0 2.0

Tweets tfidf kmeans 1.68 2.21

Source: Own results

4.4 Discussion

Overall, the results of the experiment can be considered to follow the trend of what could be observed

in the field of topic modeling as a whole. There is no universal approach for measuring performance,

and different measuring criteria tend to disagree with each other. Although we can definitely observe

a trend when we compare the results from the quantitative and qualitative analyses. Here the tradi-

tional algorithms with TF-IDF weighting seem to perform better on the news and abstracts, whereas

TF vectorizing and our novel LLM-based approach outperform on the tweets. The only outlier that

we have is the TF-LDA combination for the tweets in the qualitative assessment, which subjectively

underperforms our novel approach. To illustrate this, we can look at a topic sample of either method.

Table 6: Tweets TF-LDA Topics Sample

Topics Labels

data chatgpt human think tool answer say tell anything going Artificial Intelligence Communication

chatgpt model language make language model thought game new via like ChatGPT and Language Modeling

chatgpt used application great research way buy based potential trial AI Technology Use & Potential

chat gpt chat gpt like ask using get write make use Chatbot Functions

using read use much artificial artificial intelligence intelligence take think

make

Artificial Intelligence Usage

Source: Own results
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Table 7: Tweets TF-k-means Topics Sample

Topics Labels

websites apps launch discord smart tech implement user experience band-

wagon chatgpt enterprises

Digital Technology and User Experience

chatgpt openai artificial intelligence google microsoft gpt chatbot technology

future bing

Artificial Intelligence and Technology

Companies

chat gpt technical seo tips higher google video search engine optimization

online marketing seo wordpress seo tutorial google ranking

Digital Marketing and SEO

spit out entire internet seconds prompt recreate learning language patterns

chatbot coherent chatgpt collective works

Artificial Intelligence and Language Pro-

cessing

nft mysticism poem openai haiku writing evolve writer attempt logic Artificial Intelligence and Creativity

Source: Own results

By looking at these two samples, we can derive several conclusions. First, the labeling is difficult for

the outputs of both models. If there is a topic that is also clear to label for a human, then GPT-4 also

labels it clearly most often. For example, if we look at topic three in Table 7, we can see that the

topic has both good interpretability and labeling. In general, the topics derived from the novel pipeline

can be better interpreted, for example, topic 1 could be about the usage of chatbots to enhance the

user experience, and topic 2 could be about competition for search engines between large technology

corporations. On the other hand, topics 4 and 5 talk about ChatGPT capabilities regarding information

retrieval and writing.

Looking at the topics of the TF-LDA combination, it is much harder to gain any deeper insights into

the dataset. For example, Topic 1 of the TF-LDA combination could be about speculations about

ChatGPT thinking like a human, and Topic 2 could be about its usage in research. Of course, these

are only subjective opinions with a vague interpretation. Nonetheless, the results of the quantitative

and qualitative analyses seem to agree. Additionally, if we read over the topics that can be found in

the appendix, we can come to the same conclusion.

Of course, there are a lot of variables that could be changed, which would probably have a signifi-

cant influence on the results. For example, choosing other quantitative metrics or adding additional

ones, optimizing additional parameters of the respective algorithms, or using alternative algorithms

altogether. Another improvement could possibly be achieved by combining keywords with similar

meaning but different wording into a single keyword. This could be done, for example, by creating

word embeddings and computing their cosine similarity. With this additional step, we could effectively

reduce the vocabulary in the same way as lemmatization, which would probably yield an even better

quality of the topics for the LLM pipeline. Also, the prompts for either keyword extraction or topic

labeling and assessment could be worded differently, which seems to have a significant effect on the

output. There would also be the possibility to fine-tune a model for either of the two tasks, which

would probably result in a better performance. Additionally, we could run the qualitative assessment
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a number of times with the same approach and compile the results to get an average.

As an alternative to the qualitative examination with a LLM, we could also employ a survey where

humans are tasked with labeling the topic words and rating their interpretability. According to the liter-

ature review, this would be considered the gold standard, but regarding implementation, this approach

would also have some drawbacks. For example, a survey is most often associated with the time of

human annotators, who may or may not be experts in the respective domain of the data that we try

to model. Therefore, it would be of great value to develop a qualitative rating approach based on a

LLM. This could be done by either fine-tuning a model for this task or, for example, running a similar

setup like in our experiment a number of times. An interesting approach going in this direction would

be to inject even more randomness into the prompt by assigning different knowledge backgrounds to

the annotators we try to simulate with the LLM. This would be close to the circumstances of a real

human survey.

Coming back to the initial thought of using a LLM for evaluating topic modeling results, the experiment

and other studies already showed that, at least in its basic form, this approach would be a possibility,

although the reliability of the ratings is only somewhat useful with the configuration employed in this

experiment. Nonetheless, the new state-of-the-art models from GPT-4 onward definitely have the

capabilities for such a task.

A different aspect and probably more of a bottleneck for now is the inference time and costs as-

sociated with the novel topic modeling pipeline, which would be a considerable obstacle for larger

datasets. If we extrapolate the values from Table 2 to, for example, a dataset with a million tweets,

we would have a processing time of around seventeen days. Although, the question that arises is

whether analyzing such large datasets is even the purpose of the novel pipeline. Like we already

discussed in the previous sections, there seems to be a trade-off between interpretability and com-

putational costs between the traditional and LLM-based topic modeling approaches. Interestingly

enough, the quantitative analysis favors a larger number of topics for the novel pipeline in general,

as can be seen in Table 4. This further adds to the evidence that a LLM-based approach is probably

better suited for deriving a higher number of fine-grained topics from a smaller dataset. In contrast,

traditional approaches can complement this by giving a higher-level overview of larger datasets.

5 Conclusion
In conclusion, this research aimed to address three main questions regarding the distinctive char-

acteristics of LLMs and traditional statistical algorithms when employed for topic modeling. Their

performance in terms of computational intensity and topic quality, and the implications of choosing

one approach over the other based on specific goals, dataset characteristics, and available resources.

From the literature review and experimental analysis conducted in this study, it is evident that tradi-
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tional topic models excel at handling larger document collections with longer texts, such as news or

research papers. However, they prove to be less effective in dealing with new short-text datasets,

which are often noisy. On the other hand, LLM-based approaches demonstrate better capability for

deriving useful topics from noisy datasets, albeit requiring more computational resources. The quanti-

tative and qualitative analyses support these findings by favoring traditional topic modeling algorithms

for news and abstracts, while highlighting the novel LLM-based approach proposed in the thesis as

more suitable for tweets. It is important to note that the current LLM-based pipeline based on GPT

models is not yet feasible for large datasets and that it is difficult to derive general conclusions due to

the large number of variables that could be changed in the experiment.

Looking ahead, as LLMs continue to become more efficient with better training data, for example,

as Gunasekar et al. showed in their study on the impact of data quality on model performance

and training costs (Gunasekar et al., 2023), in the future they may become a viable option even

for larger datasets. Hence, the preliminary recommendation for now is to utilize traditional models

for larger datasets to achieve a higher-level overview and employ the new pipeline using the GPT

model family for obtaining more granular insights into smaller document collections. In summary,

this study recognizes the strengths and limitations of both LLM-based approaches and traditional

statistical algorithms in different contexts. The choice between these approaches should be carefully

considered based on specific goals, dataset characteristics, and resource availability. By utilizing both

methods strategically, researchers can obtain comprehensive topic modeling results across various

types of documents.

Finally, it must be acknowledged that further research is needed to explore the potential applications

and optimize the performance of LLMs in order to fully harness their capabilities. Additionally, the lim-

itations and challenges identified throughout this research process should serve as valuable insights

for future studies in the field of topic modeling.
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c core kaggle competition ship navigation sar iceberg transfer learning

satellite imagery data augmentation subsurface structures convolu-

tional neural network geophysics

Machine Learning in Maritime and Geo-

physics Applications

swappable components high quality primates benchmarks

state of the art methods pose artificial neural networks texture quanti-

tatively family

Artificial Intelligence and Image Process-

ing

customized hardware design convolutional neural networks parallel

two stage detectors maxpoolnms configurable approach paralleliz-

able alternative outperforms convolutions accelerating nms

Computer Vision and Hardware Design
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Appendix B: Quantitative Evaluation Plots
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Appendix C: Prompts

Keyword Extraction

Please extract the most relevant keywords that represent the main topics or concepts discussed in

the text below. The text is a {context}. I want to identify the key themes and concepts discussed in

the text to gain a quick understanding of its content. Provide a list of keywords in a comma-separated

format. Prioritize nouns and key phrases over common words or stop words. The extracted keywords

should be single words or short phrases that accurately capture the essence of the text.

Example keyword list format:

keyword1, keyword2, keyword3, keyword4, keyword5, keyword6

Text: ###

{document}

###

Word Intrusion

Please assess this list of ten words generated by a topic model. The words come from a collection of

{context}. For each list, your objective is to determine the words that do not fit with the others based

on their relationships.

Example 1:

Word List: baby crib diaper beer pacifier cry fridge

In this example, the least related words are ’beer’ and ’fridge’ because it is unrelated to infants, unlike

the other words which are closely associated with infants.

Example 2:

Word List: hard drive motherboard video card processor ram usb key

In this case, the least fitting word is ’usb key’ because it stands out as the only item that is not an

internal component of a computer.

Respond only with the number of words that do not fit.

Words:

###

{words}

###
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Coherence Rating

Please assess the degree of relatedness among groups of words on a 3-point scale. The words were

generated by a topic model and come from a collection of {context}. There are the following rating

options: Very Related, Somewhat Related, Not Very Related

Choose ’Very Related’ when most of the words within a group exhibit a clear and easily describ-

able relationship. You should be able to readily articulate how these words are connected.

Very Related Example 1:

Words: dog cat hamster rabbit snake

Relationship: ’Pets’ (An obvious way to describe the relationship)

Very Related Example 2:

Words: brushwork canvases expressionism cubism modernism curators abstract expressionism na-

tional gallery of art museum fossils

Relationship: ’Art’ (Although not all words are directly related to ’Art’, the overall connection is clear)

Choose ’Somewhat Related’ when the words within a group are loosely connected, but there might

be a few ambiguous, generic, or unrelated words present.

Somewhat Related Example 1:

Words: computer video new plug screen model

Some words are generic, and the relationship between them is not as strong. Some words may ap-

pear to be more closely related than others.

Somewhat Related Example 2:

Words: dog ball pet receipt pen

While some words may seem related, not all of them share a strong connection.

Choose ’Not Very Related’ when the words in a group lack any obvious relationship, and it would

be challenging to describe how they are connected.

Not Very Related Example:

Words: dog apple pencil earth computer

Answer only with the rating.
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Words:

###

{words}

###

Topic Labels

Please label this list of ten words generated by a topic model with a descriptive topic. The words

come from a collection of {context}. For each list, your objective is to describe the words with a label

that captures the relationship of the words. If there is no clear relationship between the words, label

the words with ’Unclear’. Answer only with the topic.

Example 1:

Words: dog cat hamster rabbit snake

Topic: Pets

Example 2:

Words: brushwork canvases expressionism cubism modernism curators abstract expressionism na-

tional gallery of art museum fossils

Topic: Art

Example 3:

Words: dog apple pencil earth computer

Topic: Unclear

Output Format:

Topic

Words:

###

{words}

###
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Appendix D: Python Code

The Python code can be found in the following GitHub repository:

https://github.com/marco507/Trade-Offs-Between-Large-Language-Models-and-Traditional-Statistical-

Algorithms-for-Topic-Modeling
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